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An alternative proof is given for the connection between a system of continuous Hahn
polynomials and identities for symmetric elements in the Heisenberg algebra, which was first
observed by Bender, Mead, and Pinsky [Phys. Rev. Lett. 56, 2445 (1986); J. Math. Phys. 28,
509 (1987)]. The continuous Hahn polynomials turn out to be Meixner-Pollaczek
polynomials. Use is made of the connection between Laguerre polynomials and Meixner—
Pollaczek polynomials, the Rodrigues formula for Laguerre polynomials, an operational
formula involving Meixner—Pollaczek polynomials, and the Schrédinger model for the
irreducible unitary representations of the three-dimensional Heisenberg group.

I. INTRODUCTION

In two recent papers'? Bender, Mead, and Pinsky dis-
cussed the connection between certain continuous Hahn
polynomials and symmetrizations of elements in the Heisen-
berg algebra. They showed that, if

[q’P] =i

and T, , is the sum of all possible terms containing m factors
of p and n factors of ¢, then

T,, =constS,(T,,), (1.1)

for some polynomial S,, of degree n, which turns out to be the
orthogonal polynomial of degree #» on R with respect to the
weight function »—1/ch(7x/2). However, the actual proof
of this result is not very clear from these two papers.

In the present paper we give an alternative proof of
(1.1). First, in Sec. II, we observe a transformation connect-
ing certain continuous Hahn polynomials, in particular, the
above polynomials S, to certain Meixner-Pollaczek polyno-
mials. Next, in Sec. ITI we use a Mellin transform relating
Laguerre polynomials and Meixner—Pollaczek polynomials
and the Rodrigues formula for Laguerre polynomials in or-
der to derive an operational formula involving Meixner~Pol-
laczek polynomials. Finally, in Sec. IV we use this operation-
al formula in order to derive formula (1.1). Here we make
use of the Schrodinger model for the irreducible unitary rep-
resentations of the Heisenberg group.

il. ON CONTINUOUS HAHN POLYNOMIALS
EXPRESSIBLE AS MEIXNER-POLLACZEK
POLYNOMIALS

Continuous Hahn polynomials are defined by

P (xa,b,cd):
_plata,latd,
n
—nhi+a+b+c+d—la+ix )
F( :1).(2.1
><32 a+C,a+d ’1 (2)

If c = ,d = b and Re a, Re b> 0, then they are orthogonal
on ( — oo,00 ) with respect to the weight function

wx):=T(@a+x)T'(b+ix)I'(c—ix)I'(d—ix). (2.2)
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See Refs. 3 and 4, but read a + ixinstead of a — ix in formula
(3) of Ref. 4.
Meixner—Pollaczek polynomials are defined by

PP (x;): = ™ ,F,( — n,a + ix;2a;1 — e~ %), (2.3)

If a>0 and 0 <¢ <, they are orthogonal on ( — c0,00)
with respect to the weight function

w(x) = e~ ¥ (a + ix)|*. (2.4)

See Refs. 5 and 6 and, for standardized notation, the Appen-
dix of Ref. 7.

For a=c=b—-1=d—1>0 the weight function
(2.2) becomes

w(x) =27%* 27T (2a + 2ix)|%
On comparing with (2.4) we conclude that
Pn(x:a,a + L,a,a + 1) = const P> (2x;} 7).

The constant can be computed by comparing coefficients of
x". We obtain

(2.5)

Pn(x8,a + La,0a + 1) = [(2a),(2a + 1) ,/n!]
X P32 (2x;4 ). (2.6)

In terms of hypergeometric functions this formula reads
—n,n+ d4a,a + ix
342

1) =,F ( —n,2a + 2ix;4a;2).

2a,2a 4}
2.7)
This identity can also be obtained from Ref. 8,
abn +2¢,—n ) ( 2a,2b, — n )
F. ( ;1) =,F. 1], .
“Na4b+Lec+) Na4b+12 (2:8)

by letting b— oo.

For a: = } the weight function (2.5) becomes

w(x) = 27%/ch(27x).
In particular, we find for the polynomials S, introduced in
Sec. 1, which were identified with special continuous Hahn

polynomials in Ref. 2, that they can be written as Meixner—
Pollaczek polynomials:

S, (x) = const P{"?(§ x,} 7). (2.9)

© 1989 American iInstitute of Physics 767



{ll. AN OPERATIONAL FORMULA INVOLVING
MEIXNER-POLLACZEK POLYNOMIALS

Recall that we can obtain the Mellin transform pair,

G(A) = Jm F(ryr— '~ %ds,
0

- (3.1)
Fn=emn= [T swra
from the Fourier transform pair,
g(/l) =J‘ f(t)e—Zfri/“dt’
o (3.2)

f = f " g(h)em™da,

by making the substitutions
F(r) =f(t), G(A) =2mg(A)

in (3.2). In particular, Mellin inversion in (3.1) is valid if
the function s—~F(&*™) belongs to the class % of rapidly
decreasing C * function on R. If F,, F, are two such func-
tions and G,, G, their Mellin transforms then we have the
Parseval formula

= 62171'

f F (1) F,(7) jl:f G,(4) G,(AL) ill— (3.3)
o T —w 2

Proposition 3.1: For a >0 and 0 < ¢ < 7 Laguerre poly-
nomials x—L 2? ~!(x) and Meixner-Pollaczek polynomials
A—P{?(A;$) are mapped onto each other by the Mellin
transform in the following way:

* n!e""'"# i 2 1—in
J e—(l/Z)x(l+lc0t¢)xaLna——l(x)x— —i dx
o (2a),

— e(ia—i)[¢— (1/2)1?](2 sin ¢)a—ur(a _ i/l)Pf,a)(/i;(ﬁ).
(3.4)

Proof: The left-hand side can be rewritten as

e—né & (—n) one—(l/Z)x(l+ioot¢)xk+a—M—1dx
o (2a) k1o
o in n(=n) T(@—id+k)

o (2a) k! (J +4icotg) Atk
—_-—e—indal-\(a —inQ __e2i¢)a_,',1
X Fy( — na — iA;2a;1 — &%)
= ™I (@ — iA) (1 — e2#)e— 4
X Fy (= na + id;2a;1 — e~ %),

which can be rewritten as the right-hand side of (3.4). O
It is possible®!® to give an interpretation of the above
proposition in the context of matrix elements of discrete se-
ries representations of SL(2,R).
Corollary 3.2: For a > 0 and 0 < ¢ < 7w Laguerre polyno-
mials can be expressed by the differentiation formula

nle~ ™" (1/2)x(1 + icot §) pay 2a—1
—_— XL~ (%)
(2a),

d

=P,‘,")(—ix7—;¢)(e‘“’2”‘“+"°°‘¢’X“). (35)
X
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Proof: In the left-hand side of (3.4) Mellin transform is
taken of a function that belongs to the class % as a function
of ¢, where x = ¢'. Hence we can apply Mellin inversion [cf.
(3.1)] and we can write the left-hand side of (3.5) as

(21T)—1f e(ia—ﬂ.)[¢—(1/2)1r](2 Sin¢)a—i/l

XT(a — iA)P @ (A;9)x™ dA

d
o —in L)
dx ¢
X [e(ia—ﬂ.)w— (1/2)17](2 sin ¢)a—i/1
Xr(a - i/{)xm] )

which equals the right-hand side of (3.5). O
By substitution of the Rodrigues formula

nle *x°L%(x) = (—fi—)n(e"‘x"*“)
dx
into (3.5) we obtain

(%)"(e—xxn+2a—l)

—_ (2a)nein¢e— (1/2)x(1 — icotg¢)xa— 1

XP(H)(_l'xi’¢)[e—(l/2)x(l+icot¢)xa]' (3.6)
" dx

In particular, for ¢ = 17 and @ = } we obtain

(e

=n'e-—(1/2)xP(l/2)(l'x d 1. 1
M Id

+"'_l’—_"

—(1/2)x
dx 22 ">[e I

Hence for arbitrary veC,
ivxf » d )n n, — 2ivx
ei—| (x"e
( dx ( )
d 1.1 ;
=n!Pf,"2’(ix—+———i,—4r) e~ ™.
dx 2 2 [ ]

(3.7)

V. PROOF OF THE BENDER-MEAD-PINSKY RESULT

Consider the Heisenberg group H,, which is R? equipped
with the multiplication rule

&nn) (&', )
=E+&m+n T+ & —En).

Let AcR\{0} and let 7, denote the unique (up to equiv-

alence) irreducible unitary representation of H, such that
7, (0,0,7) = eI, 7eR.

Then, withz: = |4 |"?and e: = sgn(4), 7, can be realized
onL? (R) by

(17,1 (5:77;T)f)(-x)

= eMbxeWler+ WENF (x 4 ), fe L*(R). (4.2)
Let X and Y be the infinitesimal generators of the one-pa-
rameter subgroups of elements (£,0,0) and (0,7,0), respec-
tively. Let o denote the symmetrization mapping'’ from the

symmetric algebra to the universal enveloping algebra of the
Lie algebra of H,, i.e.,

(4.1)
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. 1
o(Xl"'Xk):=EES:XS(1)"'XS(,(), 4.3)

where s runs over all permutations of {1,...,k}. Let fbe a
C = function locally defined on R. Then

(72 (X) f)(x) = iux f (x),
(T (Y) fHx) =pf'(x),
and

(ma(o(X"Y ™) f)(x)

S T

= (iu —(%)"((x + —;—/m)nf(x + un))

&Enr=0

n=0
Hence

(m(o(X"Y ™) f)(x)

=4 |n[,-i]"
dy

x((x + %y)"f(x +y)) (4.4)

y=0
For n = 1 this simplifies to

(m oD = A (i 4+ 27) f ). (45)
ax 2

Let

[o(x)i=e™ ™

Then we obtain from (4.4), (3.7), and (4.5) that
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(mp(o(X"Y ™) £,) (x)

g b) e

y=0
— 2—n|1 lneivx(ii)"(xne—ﬁvx)
Ix
d 1.1 ;
___2—n !/1 nP(I/Z)(' adil _"_ ) — ivx
A |"P zxdx+212ﬂ'[e ]

=2""nl|A |"P P (|A | T ' mala (XD m) [ f, (%) ].

Hence by integrating both sides against suitable functions of
v, we obtain

m(o(X"Y™) =2""nl|A |"P P (JA |7 (o (X)) ).
(4.6)

In view of (2.9) and (4.3) this becomes for A = 1 the result
(1.1) of Ref. 1.
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It is shown that the short-time expansion of the integrated heat kernel on a locally flat
generalized cone C(X), as defined by Cheeger, consists of just the Weyl volume term and the
constant term. This latter is explicitly evaluated when N is a lens space, $?/Z,,, (for odd d),
elliptic space S%/Z, (for all d), and any of the three-dimensional, homogeneous space forms
S3/T". Agreement is found with the corresponding expansion on the orbifold version, T%/Z,, of

the K 3 surface, and, in fact, with all T°/Z,.

I. INTRODUCTION

In Ref. 1, we discussed the heat kernel expansion on a
polyhedron, considered as a collection of ordinary, two-di-
mensional, conical singularities. In this article, we wish to
analyze a similar situation but with the subsitution of a ““gen-
eralized cone,” C(N). This is defined by Cheeger’ as the
space R * X N with the “hyperspherical polar” metric

ds’ =dr* + r* d3?, (1)

where d32 is the metric on the manifold &, and r runs from O
to infinity, the point » = O being generally a singular point—
the apex of the cone. If AV is the sphere of unit radius S¢,
C(N)isjust R+ ' For N =S, of any radius, C(X) is the
ordinary cone.

Cheeger? discusses precisely the heat kernel question
but his analysis is very complete and it was thought that a
simpler treatment of some special cases might be useful.

Some “physical” motivation will be found in Sec. VI. As
a simple extension, which often proves useful, we could add
d’ extra Euclidean dimensions z, and write the metric as

ds’ =dr* + ¥ d3?* + dz*. (2)

In this paper we set d ' equal to zero.

Il. THE HEAT KERNEL

In this work we consider only scalar fields (functions)
and write the heat equation as

[i - AC]K(x,x';t) — 8(D8(x,x"),
ot

where x,x’ are points in C(N). Formally, K = exp(tA¢),
t>0.
The metric (1) allows a separation of variables since the
Laplacian can be written
d* dd 1
Ac =t ——— —
a?  rar P
where A is the Laplacian on N.
The eigenfunction form of the heat kernel is then easily
manipulated into

Ay,

1 . e
K(rgr.git) = ()¢ _d>/22_e,(,_+,, st
t

r’ 4
lev,,(’z—t)m‘(q)«ﬁn(q ), (3)
where the ¢, are eigenfunctions of A,
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AN¢N = -4 i¢n
The v, and 4,, are related by
v, =A% + (d - 1)¥/4)'/2 (4)

We remark that (3) is partly in classical path and partly
in eigenfunction form.

lll. THE SPHERICAL CASE

In order to take the analysis further, in explicit form, we
need a special choice for N. Clearly, one important class of
manifolds is that of homogeneous spaces, G /H. In particu-
lar, we might consider those of rank 1. However, we leave
these aside, in their generality, and simply look at the special
case of spheres or rather those manifolds locally isometric to
spheres. Thus we choose N = §? /T, where I is a discrete
group of isometries of 7.

Moreover, if the spheres are of unit radius, the cones
C(N) will be flat, except at the apex, since they will be locally
isometric to R+ !, This is the case we exclusively discuss in
this paper.

Conical spaces such as these occur in general relativity.’
Because of the local flatness, we would expect certain simpli-
fications. Indeed, the eigenvalues on the sphere S¢ are well
known to be

A,=(n—=1(n+d-2)

=+ (d—3)/2) — (d—-1)%/4
Hence, from (4),

v,=n+ (d—-3)/2. (3)

It is no surprise that the term (d — 1)?/4 is just the quantity
&R [R is the scalar curvature and £ = (d — 1)/4d] needed
to make the operator — Ay + £R conformally covariant.
(If d is odd, this leads to a Huygens principle for the wave
operator d%/3t* — Ay + £R, afact well known to physicists
for a long time and, more recently, to mathematicians.*)

In order to illustrate the general method, it is sufficient
to consider the case when N = S3/T so that, technically, we
can use the isometry S ~SU(2).

The structure of I is well known® to be the product
I", X T'g acting on the coordinate g, thought of as an element
of SU(2). For homogeneity, one of these components must
be the trivial identity group. We choose I' = I', and, fur-
thermore, we shall look closely at lens spaces, I’ = Z,,,. This
is a case mentioned by Cheeger,? but he does not give the
explicit formulas.

(n=12,.).
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IV. 83/T CONES

Just as in the theory® of the heat kernel (or Schrédinger
propagator) on.S /T, the K of (3) can be found from that on
N = S3, which is the universal covering space of .S 3/T, by
adding up the contributions from the preimages of the final
point ¢’, say. Equivalently, one can use the eigenfunctions on
S3/T expressed as the periodized sums,

ey — | Y1 ]l/z_l_ )
n (9) [ T 2172;Drs (rq),
where the D'” are the standard SU(2) representation ma-
trices. The relation between the angular momentum number
and the label n of (5) is n =2j + 1; |T'| is the order of T".
The answer is

K(rq,r.q;0)
1 (P4 /4 (rr’) ) ' o1
= e I |—|ny"’ ), (6)
47 trr’ ,,z:‘, 2t o re

x'7(g) is the character of the group element g in the repre-
sentation labeled by j. Homogeneity says that we can set
g = e, the unit element,” and we see this in (6).

Explicitly, we have

x'”(g) =sin(né,)/sin 6,

where 6, is the geodesic distance between the origin (unit
element) and the point g. If we use Euler angles 4, ¢, and ¢
as coordinates for g, then we can always rotate the S > so that
& and @ are constant on the geodesic connecting e and g and
we then see that 6, = /2; 6, ranges from 0 to 27.

For us, interest centers on the coincidence limit # = r,
¢’ = q. Denote this by K (7,g;t) and from (6) find

1 . 7 .
K(rgt) =——e "3 L—ny" (). 7
(r.g;t) R 2 X 62/ (7

Although this is a useful formula, it is not convenient if
we wish to integrate it over the cone C(N). We rewrite it,
initially, as

K(rgt) = ! I_3 ,,chS(nﬁy),

—r/2t I
a7’tr ¢ ; dcos 6, ,,;o
(8)

where we have extended the sum down to #n = 0, as we may.
The second summation is recognized as the corresponding
quantity in the S'' case, treated earlier.'

We have here an example of the method whereby appli-
cation of the operator d /ds* (where s is the geodesic dis-
tance) produces quantities on a space of two higher dimen-
sions. In flat space, this was used by Hadamard® and on
spheres by us® and others more recently.'® As we have done
it here, the formula for the sphere follows from that on flat
space. In fact, since the metric (1) is locally flat, we could
have begun with the standard Gaussian heat kernel on R *
written in (r,g) coordinates and then applied a preimage
sum to this. In this way, the Bessel functions could have been
avoided. Section V contains the details of this method.

All these statements extend to the full propagator
K(r,g,r,q';t). We do not write out the expressions but con-
centrate on the coincidence limit (8). Thus, either directly
from the Gaussian “classical paths” form or by applying a
transformation to (8), we find
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1 1 E
k(rgt) =
(r4D = 1657 T 52 2. Foos 6,
xexp{ — (1 — cos 6 —’-). 9
exp( (1 —cos 7)2t 9

The first term comes from the Gaussian kernel on R * and,
when integrated over C(N), will produce the usual Weyl
volume divergence. The remainder gives, on integration, the
time-independent expression,
1
K'(t) =—— Y csc?(8,).
(1) 8|F|y; c*(0,)
This, then, is the required constant term, 167°c,, in the
expansion of the integrated heat kernel. It is easily evaluated
for the different I'. Thus, for lens spaces S3/Z, , where
0, =27k /m (k=0,.,m — 1), we find

2 2
1617'2c2=(m + 1) (m” —1)
360m

while, for the double dihedral group, D.,,(S°/D;,
= “prism space”), calculation yields'’

(16m* + 40m? + 360m — 11)
1440m '
For the remaining groups, 7’,0’,and Y, the values of 167°c,
are 1505/1728, 4529/3456, and 87109/43200, respectively.
As a general conclusion, we see that the (asymptotic)
expansion of the integrated heat kernel on the generalized
cone C(S3/T") consists of just two terms, the Weyl volume
term and the constant term. Curiously, there is no term pro-
portional to 1/¢, as might have been expected.

V. HIGHER SPHERES

The method we employ here is the alternative one men-
tioned in Sec. IV, which starts from the standard Gaussian
heat kernel on R4+ !,

Ko(x,x;t) = [1/(4mt) @ + D2 ]exp( — (x — x')?/4t).
The coordinates x can be replaced by » and g, where ¢ is the
coordinate on §7.

We are interested in the coincidence limit of the kernel
when $7 is replaced by S$¢/TI". By homogeneity this will be
independent of the position on the sphere and will be simply
a function of 7 and 6, (as well as of ¢), where 6, is the
geodesic distance (on the sphere) between the north pole,
say, and its image under yel.

Specifically we are saying that the kernel we require is
given by the preimage sum

(10)

(11)

167°%c, =

K(xx';t) = Y Ko(x,7x30), (12)
Y

where the action of ' on x is defined by
yx = y(r,q) = (r,yq) and g and ¢’ are restricted to a funda-
mental domain of T" on S

Setting x’ equal to x, the geometry enables us to write

Ko(x,yx;t) = [1/(4mt)“+ V7] exp( — (1 —cos 6,)r7/2t).

When summed over ¥, this is in agreement with (9) and
is an easier derivation. As before, ¥ = e gives the Weyl vol-
ume term.

Itis straightforward to integrate the y e terms over the
cone to obtain the generalization of (10),
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-z ()
K'(t) 2‘”‘][‘|,§ecsc 5 ) (13)
If d is even, the only possibility for I is Z, giving elliptic
space. Then substituting 6, = 7 gives K '(1) = 1/2¢"*, for
all d.

For odd d, the classification of homogeneous S /T is
given by Wolf (Ref. 12, Corollary 2.7.2). Forallodd d there
are lens spaces, with I' = Z, , and for d = 3,7,11,..., addi-
tionally, T =D ,,, T', O', and Y'. The case of d = 3, dis-
cussed in Sec. IV, is thus adequate. Nevertheless, we shall
evaluate K '(¢) for the general dimension in the case of lens
spaces. The other values can be easily calculated, if desired.

For I'=Z,, the 6, are as before, i.e., 8, =27k /m
(k =0,1,....,m — 1). The calculation of the sums of powers
of cosecants goes back to Euler.'* He used purely trigono-
metric methods but there are, of course, many other ways of

proceeding. Information can be found in Refs. 14. A particu-
1

1

60 4807
1

~ 3628 800m

-1

95 800 320m

K'(t)= (m? = 1)(2m* 4+ 23m? + 191),

All these results can be obtained using the expressions in
Cheeger’s paper® but we believe our methods to be more
direct, if less rigorous.

VI. DISCUSSION AND CONCLUSION

We have evaluated the short-time expansion of the inte-
grated heat kernel on the generalized cone C(X), where N is
a homogeneous spherical space form of unit radius.

The expansion consists of only two terms—the Weyl
volume term and the term independent of the time.

Cheeger’s general result (Ref. 2, Theorem 7.2) is that,
on a piecewise flat pseudomanifold, the expansion ceases
after the constant term. Our conclusion agrees with this be-
cause such a pseudomanifold can be thought of, roughly, as a
complex of flat generalized cones of dimensions up to the
dimension » of the pseudomanifold. The heat kernel takes
contributions from all these cones and so contains only nega-
tive powers of ¢ from ¢ = /> up to t°, in steps in ¢ /2,

Explicit expressions have been given for the lens spaces,
S¢/Z, (dodd), S,/Z, (deven) and the three-dimensional
space forms.

In particular, for the elliptic case S*/Z,, we obtain a
value of -}, for the constant term. It is possible to join 16 of
these generalized cones to make a closed surface on which
the constant term would thus be 1. This surface is the “orbi-
fold” T*/Z, and it is an easy exercise to check that the heat
kernel on this surface, constructed as a theta function, has
the required expansion. (See the Appendix.) The famous K 3
surface is obtained if the 16 singular points are blown up by
smoothly patching in metrics of the Eguchi-Hanson type.?

The interest in such constructions stems, partly, from
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d=>5

(m* = 1)(m* + 11)(3m* 4+ 10m* + 227),

(m?> —1)(2m® + + 35m% 4 321m* + 2125m* + 14797),

larly easy way is to use contour integration, although we
have not seen this method in print.
The calculations in Ref. 15 produce the identity

m—1
Z cos( 2mrk )csc“’ (Lk>
K=1 m m

1 N r 1

=Y mWZ”(m 2)
in terms of the polynomials W), (8) defined in Ref. 15 using
Bernoulli polynomials. We do not give their general form
here but note that (14) includes all the known results. The
cosine coefficient is a “‘twisting,” with r taking integer values
fromQtom — 1.

The sums that we need are those for # = 0. The result for
N = 2 has been given in Sec. IV and we simply list now, for
d=35,7,and 9, the expressions for K'(¢) obtained by com-
bining (13) and (14).

(14)

d=17

d=09.

gtring theory and the attempt to compactify into orbifolds,
for example, into the Z orbifold.'®

It would also seem possible to construct locally flat,
compact combinations of generalized cones, only some of
which would be orbifolds since they would not be factored
flat spaces, in general. Nevertheless, they could possess sym-
metry. The cube is not an orbifold. Should one consider com-
pactification onto regular, nonorbifold, generalized polyhe-
dra?

Another physical possibility is to extend the metric as in
(2) and consider these as describing some sort of “linear”
defect in higher dimensional space-time, similar to the ideal-
ized cosmic string (which corresponds to the ordinary cone)
or to solutions in 1 4 2-dimensional gravity. It would then
be possible to calculate the ensuing vacuum polarization, for
example.

From the formal point of view, there are a number of
extensions that need to be carried out. For example, the class
of functions could be generalized to include forms? or spin-
ors. One could also include “twisted” fields, which are al-
lowed because of the nontriviality of the first fundamental
group, 7, (C). Characters belonging to Hom(z,U(1)) then
occur®in Eq. (12) and the sums (14) for nonzero r would be
needed. Some relevant calculations have been performed in
Ref. 17. In addition, a general gauge group G might be con-
sidered, requiring Hom (7 ,G)."*

In a different vein, it would be interesting to look at
classical motion and quantum scattering on generalized
cones.
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APPENDIX

We require the constant term in the heat kernel expan-
sion on the T? /Z, orbifold. Although it is straightforward to
use the theta function form of the heat kernel itself, we shall
be a little roundabout and approach the topic via zeta func-
tions, the constant term being related to the value of the zeta
function at zero argument by

£(0) = const term — no. of zero modes. (A1)

We take the torus T to be the unit one so that the
eigenfunctions of the Laplacian are porportional to
exp(in-d), where the integers n, range from — o t0 + .
The corresponding zeta function £, (s) is then of Epstein
form,

+
Cro(s) =Y "(0*) %

where the sum is over all n, except 0 (this restriction is de-
noted by the prime).

The torus is a smooth, flat, compact manifold so that
from (A1) we have

£rn(0) = —1 (A2)

because the constant term vanishes and the only zero mode is
n=0.

On T ?/Z, the modes are required, by definition, to be
symmetric under the reflection 3 — — 3 and so are propor-
tional to cos(n+0). The degeneracies are slightly altered. All
possible modes are covered by the label values n, = 0,1,2,...
and n, =0,F 1, F2,... for i#1. The zeta function easily
follows,

gT”/Z: (8) =35 ,0(5).

The | is not quite just a volume factor.

(A3)
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Again, there is only one zero mode on 7°/Z,, so that,
from (A1)-(A3)

const termon T?/Z, = $ro,z,(0) +1

= %‘TD(O) +1= %

Antisymmetric modes give — ] since now there is no zero
mode.

Because of (A3), all the other heat kernel coefficients
vanish, apart from the first one (for which the | is a volume
effect).

There are 2” fixed points on T"?/Z,, so that the contri-
bution of each to the constant term in the heat kernel expan-
sion is 1/2? * ', This agrees with that found for the general-
ized cone C(S°~'/Z,) in Sec. V.
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In this paper addition theorems are derived for a special class of exponentially declining
functions, the so-called B functions B, (a,r) [E. Filter and E. O. Steinborn, Phys. Rev. A 18,
1 (1978)]. Although these B functions have a relatively complicated analytical structure they
nevertheless have some mathematical properties that are particularly advantageous in
connection with multicenter problems. Also, all the commonly occurring exponentially
declining functions like, for instance, bound-state hydrogen eigenfunctions and Slater-type
functions, can be expressed by simple finite sums of B functions. Consequently, addition
theorems for these functions can also be written down immediately. The various addition
theorems for B functions are derived by applying suitable generating differential operators to
the well-known addition theorem of the special B function B™ ,;, which is that solution of the
modified Helmholtz equation that is irregular at the origin and regular at infinity [E. J.
Weniger and E. O. Steinborn, J. Math. Phys. 26, 664 (1985)]. All differentiations, which have
to be done in this approach, can be expressed in closed form leading to comparatively compact

addition theorems.

I. INTRODUCTION

In the mathematical treatment of physical problems it is
often necessary to transform wave functions and operators,
which may depend upon the coordinates of more than one
particle, in such a way that the coordinates of the pertaining
particles appear in a computationally more convenient and
accessible form. In most cases this requires a separation of
variables. Unfortunately, there is no straightforward way to
accomplish this task for all functions and operators of phys-
ical interest. Problems of that kind, which are quite common
in systems with a Coulombic interaction, are particularly
troublesome in electronic structure calculations of mole-
cules and solids. If in an orbital approximation the LCAO-
MO ansatz is used, it is not only necessary to deal with the
coordinates of many electrons but the wave functions are
also defined with respect to the coordinates of different nu-
clei. Similar multicenter problems also occur in the theory of
intermolecular forces or in scattering theory.

The aforementioned separation of variables can be ac-
complished with the help of so-called addition theorems. An
addition theorem is a series expansion of a given function
f(x + y) with x,yeR? in terms of other functions that only
depend upon either x or y. The series expansion may either
converge pointwise or with respect to the norm of a suitable
Hilbert space. However, in this paper, only addition theo-
rems that converge pointwise will be treated. The probably
best known example of such an addition theorem is the La-
place expansion of the Coulomb potential in terms of spheri-
cal harmonics Y7,

1 = ar 7 .(r r
1 - vr(=)re(2),
[ty — 1y IZOm;—I 2141 A+ "\ '\,

r. =min(r,r,), r

(1.1)

5 =max(r,r,) .
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There is a vast literature on addition theorems. Particularly
well studied are the addition theorems of the solutions of the
homogeneous Laplace equation,'™'? of the homogeneous
Helmholtz equation,'®'*"'® and of the homogeneous modi-
fied Helmholtz equation.'®!7-2° This large number of refer-
ences not only reflects the physical importance of the solu-
tions of these equations but also the relative ease with which
the addition theorems of these functions can be derived. The
derivation of addition theorems for other functions, which
are not solutions of the equations listed above, turns out to
be, in most cases, significantly harder. Ruedenberg?' and
Silverstone*? showed how addition theorems of relatively
general functions may be derived with the help of Fourier
transformation. Another general method for the derivation
of addition theorems is Léwdin’s a function technique,?
which was used and also extended by numerous other auth-
ors.?*** Since exponentially declining functions are well
suited to serve as basis functions in electronic structure cal-
culations of atoms, molecules, and solids, and since in this
context the notorious molecular multicenter integrals can-
not be avoided, there is also a large number of articles deal-
ing with the relatively complicated addition theorems of
Slater-type functions,?%23:26:28.29.35-39

In this paper, we shall derive addition theorems for an-
other class of exponentially declining functions, the so-
called B functions.*® This choice may appear to be somewhat
surprising since B functions have a relatively complicated
mathematical structure, and at first sight it is by no means
obvious that anything can be gained by considering B func-
tions instead of the apparently much simpler Slater-type
functions. However, as will be discussed later, B functions
have some remarkable mathematical properties that give
them a unique position among exponentially declining func-
tions and make them especially useful for molecular calcula-
tions. As a result of these advantageous properties it is not
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only relatively easy to derive addition theorems for B func-
tins, but these addition theorems also have comparatively
simple structures.

Our derivation of addition theorems of B functions
closely resembles the zeta function method of Barnett and
Coulson.> The starting point of this approach is the well-
known addition theorem of the Yukawa potentiale — *" /r. If
a given exponentially declining function can be generated by
applying a suitable differential operator to the Yukawa po-
tential, then it is at least in principle possible to derive an
addition theorem for this function by applying this generat-
ing differential operator to the addition theorem of the
Yukawa potential. Unfortunately, this idea did not lead to
complete success in the case of Slater-type functions. Be-
cause of technical problems it was simply not possible to
perform the differentiations in closed form. Consequently,
the coefficients of the zeta function expansion could only be
computed recursively.*>¢ In the case of B functions, how-
ever, these problems can be overcome. We shall show in this
paper that all differentiations can easily be expressed in
closed form if the generating differential operator of a B
function is applied to the addition theorem of the Yukawa
potential. In our opinion, the relative ease with which this
can be accomplished again indicates that, because of their
advantageous mathematical properties, B functions indeed
assume an exceptional position among exponentially declin-
ing functions.

In this context, it should be mentioned that all the com-
monly occurring exponentially declining functions, like, for
instance, Slater-type functions or bound-state hydrogen ei-
genfunctions, may be expressed by simple finite sums of B
functions. Consequently, with the help of the results of this
paper addition theorems for all these functions can be writ-
ten down immediately.

Il. DEFINITIONS

For the commonly occurring special functions of math-
ematical physics we shall use the notations and conventions
of Magnus, Oberhettinger, and Soni*' unless explicitly stat-
ed. Hereafter, this reference will be denoted as MOS in the
text.

For the spherical harmonics ¥ }"(,¢) we use the phase
convention of Condon and Shortley,*? i.e., they are defined
by the expression

2+ 1) (I — |m])!
4 (I + |m|)!

Yr(d,p) =i"t '""[ ]VZP',’"'(cos 3)eme .

2.0
Here, P )™ (cos ) is an associated Legendre polynomial,
x2)m/2 d1+ m (x2 . l)l

PO == e ™

m

=1 ——x2)"‘/25—m— P,(x) . (2.2)
X

For the regular and irregular solid harmonics we write
Yr(r) =rY(d,e), (2.3)
Zrr)=r- 7Y (S,e) . 24)

It is important to note that the regular solid harmonic %[ is
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a homogeneous polynomial of degree /in the Cartesian com-
ponents x, y, and z of r,*

Yr(r) = [ 2+ nd—mn|”

v

% z ( —x— l:},)rn+k(x_ l:y)kzl—m—-zk '
5o 27 (m 4+ k)N — m — 2k)!
(2.5)
In Eq. (2.5) the Cartesian components of r = (x,,z) can be
replaced by the Cartesian components of V = (d /dx, d /3y,
d/3dz). This yields the differential operator % *(V) that is
also a spherical tensor of rank /, which we shall call the
spherical tensor gradient. A discussion of the properties of
this differential operator %/ 1*(V) and a survey of the relevant
literature can be found in articles by Niukkanen,** Rashid,*
and ourselves.'>4¢
For the integral of the product of three spherical har-
monics over the surface of the unit sphere in R?, the so-called
Gaunt coefficient, we write

(ymy| Ly |1, =f Y7 () YR (Q) Y7 (Q)dQ.
(2.6)

The Gaunt coefficients linearize the product of two spherical
harmonics,

Y)Y Q)
Imll
=2 @ (Imy + my|imy | Lm) YT+ m(Q)
le=lin

2.7)

The symbol 2? indicates that the summation proceeds in
steps of 2. The summation limits in Eq. (2.7), which follow
from the selection rules satisfied by the Gaunt coefficient,
are given by*’

lmax =ll +12!

max(|l; — b|,|m, + my|),
if 1., + max(|l, — L|,|m;, + m,|) is even,
max(lll - 12|,|m, + mzl) + 1,

if 1., + max(|l, — L},|m, + m,|) is odd.
(2.8)

lIl. SOME PROPERTIES OF 8 FUNCTIONS

In this section we shall review those mathematical prop-
erties of B functions that are relevant for the derivation of
addition theorems. More complete treatments of the proper-
ties of B functions were given elsewhere,*6-48-52

If K, (2) is a modified Bessel function of the second kind
(MOS, p. 66), the reduced Bessel function &, (z) is defined
by

k,(2) = (2/m)\%2°K, (z) . (3.1)

If the order v of the reduced Bessel function is negative, we
may use

k_(@2)=z"%k(2). (3.2)
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This relationship follows from a symmetry property of the
modified Bessel function X, (z) (MOS, p. 67).

If the order v is half integral and positive, v=n + 1/2
and neN,, a reduced Bessel function may be written as an
exponential multiplied by a terminating hypergeometric se-
ries F,,>°

ko 1p2(2) =2%(1/2) 6% \Fy( —n; — 2n22), 130,
(3.3)

with (1/2), being a Pochhammer symbol (MOS, p. 3). We
found out some time ago that the hypergeometric polynomi-
al in Eq. (3.3) has also been investigated independently in
the mathematical literature.>® There, the notation

®,(2) =ékn+1,2(z) (3.4)

is used. Together with some other, closely related polynomi-
als the ®,, (2) are called Bessel polynomials. They were ap-
plied in such diverse fields as number theory, statistics, and
the analysis of complex electrical networks.>?

As an anisotropic generalization of the reduced Bessel
function with half integral order, the so-called B function
was introduced,

B7T(ax) = (2" n+ DIk, _ 1 (@r)F T (ar),
(3.5)

Because of the factorial (7 + [)!, which occurs in the de-
nominator of Eq. (3.5), B functions are defined in the sense
of classical analysis only if # + />0 holds. However, it could
be shown that the definition of a B function according to Eq.
(3.5) remains meaningful even if n is a negative integer such
that n + / < Oholds. In this case, B “functions” can be identi-
fied with derivatives of the three-dimensional delta func-
tion,*¢

B” ,_.(ar)

= (4r/a’+2) (2 — DI[1 — a=2V2]"~ 187 (r),

acR .

n>1. (3.6)
The spherical deita function 87" is defined by
S7(r) = (— D[ = DU T'FP(V)E(r) . (3.7)

The B functions have a remarkable property that seems
to be unique among exponentially declining functions: It is
extremely easy to generate anisotropic B functions by differ-
entiating scalar B functions. One only has to apply the
spherical tensor gradient % *(V) to a scalar B function in
order to obtain a nonscalar B function,*5* i.e., a spherical
tensor of rank /,

Bm(ar) =(—a) '(4m)' 2 M(V)BY, n(ar). (3.8)

In the case of other exponentially declining atomic orbitals
the corresponding generating differential operators are sig-
nificantly more complicated.>*

Of particular importance is the special case n = — /in
Eq. (3.8) because it connects the functions B™ ;, and B{,.
The function

B™ ,(ax) =k, (ar) Z ] (ar) 3.9

is the solution of the homogeneous modified Helmholtz
equation that is irregular at the origin and regular at infin-
ity,'? and B}, is essentially the Yukawa potential,

776 J. Math. Phys., Vol. 30, No. 4, April 1989

e~ /r= (471)"?aBj,(a,r) . (3.10)

This fact enabled us to simplify the derivation of the addition
theorem of the modified Helmholtz harmonic B , consid-
erably.'> We only had to apply the spherical tensor gradient
% 7(V) to the well-known (MOS, p. 107) addition theorem
of the Yukawa potential. The differentiations posed no prob-
lems and could all be done in closed form.

Starting from the modified Helmholtz harmonic B |,
all higher B functions B}, with n> — [ can be generated.
One only has to differentiate B ™ ,, with respect to the scal-
ing parameter a,*°

B (ar)

2n+1—1

= (1 a)"+l I+1pm

o Ja B » .
(2" ntD\a da) Z u(ar)
(3.11)

Because of the differential operator @' 3 /da this generat-
ing differential operator for B functions appears to be much
more complicated than analogous generating differential op-
erators*® for Slater-type functions which only contain the
differential operator d /da. However, this is not the case if
Bessel functions are to be differentiated because thena ="' 3/
da can be applied quite easily whereas d /da is very inconve-
nient. In fact, Eq. (3.11) will be one of the central relation-
ships of this paper because we shall derive addition theorems
for B functions by applying the generating differential opera-
tor in Eq. (3.11) to the addition theorem of the modified
Helmbholtz harmonics.

It follows from Egs. (3.3) and (3.5) that a B function
has a relatively complicated structure. However, it could be
shown by ourselves*®*° and shortly afterwards also by Niuk-
kanen® that the Fourier transform of a B functions is of
exceptional simplicity:

Br(ap) = (27)“3’2fe"""'3 m(a,r)d’r

2 172 aZn +1—1 . .
The Fourier transforms of other exponentially declining
functions such as Slater-type functions or bound-state hy-
drogen eigenfunctions are significantly more complicated.
In articles by Niukkanen® and ourselves*®-*S it was shown
that the Fourier transforms of all commonly occurring ex-
ponentially declining functions can be expressed as simple
finite sums of Fourier transforms of B functions. Since Four-
ier transformation is a linear operation, this implies that the
commonly occurring exponentially declining functions can
be written as simple finite sums of B functions. If y; is an
unnormalized Slater-type function,

rr(ar) = (ar)" e~ Y (Sp), n—1>1, (3.13)
then we can write*°
Xniasr)
n—1 —1Yy i — DY 2] ]
ot (20— 1+ D120 — 21 — 2p)!
(n—0/2, if n — lis even,
) 3.14
"""[(n—l—l)/Z, if n — [is odd. ( )
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Let W7, (Zr) be a bound-state eigenfunction of a hydro
genlike ion with nuclear charge Z,

m(Zx) ={2Z /n}*"*{(n — 1 — DV [2n(n + DI}
X e~ Z/rL 3D (QZr/n) YT (22x/n) .
(3.15)
Here, L (% 1), is a generalized Laguerre polynomial (MOS,
pp- 239-249). Then we can write*®
2Z

372
wr(Zr) = (——)
n

21+1 n(n+1)! 172
(21—}—1)!![2(71—1—1)!]
"G (4D (n4+ 14 1),

:;o tW(1+372),

m zZ
X Br+ 1,1(_' ,l‘) .
n

The following set of functions, which was introduced in
atomic and molecular calculations by Hylleraas’” and by
Shull and Léwdin,>® is complete and orthonormal in the Hil-
bert space L 2(R?),

A (ar) = 2a){{(n—1—- 1)/ (n+ 14+ 1)1}/
X e L34 ar¥T(2ar) . (3.17)

56,59

x

(3.16)

These functions can be written as

@n+1) [(n+1+ 1)!]”2

e+ lm—1-1

T (—n+14+1D,(n+1+2),
t\(1+5/72),

A (ar) = (2a)%/%2!

n—1—
X >
t=0

X B7, , (ar) . (3.18)

Closely related to the hydrogen eigenfunctions are the fol-
lowing functions that were already used in 1928 by Hyller-
aas®® and which are commonly called Coulomb Sturmians
or simply Sturmians,®’

™ (ar) = (2a)*{(n — I - 1)/ [2n(n + D]}"?

X e L ¥4 D 2ary#"(2ar) . (3.19)
Comparison of Egs. (3.15) and (3.19) yields®
W (Z/nx) = W7 (Zr) . (3.20)

Hence we only have to replace Z /n in Eq. (3.16) by a in
order to obtain a representation of Sturmians in terms of B
functions,>®

(+1 1 172
YT () = (2a)32—2 [ n(n+D! ]

+ 12 —1-1)

nd=1(—n41+1),(n+14+1),
=o i1+ 3/2),

X BT, (ar) .

X

(3.21)

It is, in fact, by no means obvious that the normalization
constants of bound-state hydrogen eigenfunctions and Stur-
mians should be identical. Hydrogen eigenfunctions are nor-
malized with respect to the norm of the Hilbert space
L?*(R?), whereas Sturmians are normalized with respect to
the norm of the Sobolev space W " (R3).%6:62

There is another, very important difference. Bound-
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state hydrogen eigenfunctions are an orthonormal set in
L ?(R?) whichisincomplete without the inclusion of the con-
tinuum eigenfunctions, whereas Sturmians are a complete
orthonormal set in W {"’(R*). The importance of the com-
pleteness of a set of functions in the Sobolev space W " (R?)
for the convergence of the Ritz variational procedure was
emphasized by Klahn and Bingel.®

The following set of functions is also complete in the
Hilbert space L *(R?) and satisfies a biorthogonality relation
with Sturmians,>®

D7 (arx) = (za)s/z[n(n —1- 1)!}'/2e“‘"

2(n 4+ D! ar
X L4 Qar)% " (2ar) , (3.22)
f Q7 ()T, (a)d > = 8,8, 8, - (3.23)
RJ

These functions were introduced in connection with some
weakly convergent expansions of a plane wave®® which are
closely related to the Shibuya-Wulfman expansion® of a
plane wave in terms of four-dimensional spherical harmon-
ics. They can also be expressed in terms of B functions,’®
21 n ( n+ I) ]1/2
QI+ 12(n—-1-1)
rdot (—n+ 1+ D), (n+141),
o ti(1+372),

X B7i(a,r) .

7 (a,r) = (2a)3/2

X

(3.24)

1V. ADDITION THEOREMS FOR B FUNCTIONS

The fundamental relationship for the derivation of addi-
tion theorems of B functions is the well-known addition
theorem (MOS, p. 107) of the Yukawa potential,

- aw

=)™ 3 (2 + )P, (cos P)
=0

X I 1 p(ap)K,, pp(ar),
w= [P +p*—2mpcos Y] O<p<r. 4.1)

Here, I, , ,,, is a modified Bessel function of the first kind
(MOS, p. 66). If we now use the so-called addition theorem
of the spherical harmonics,

!
.2 )
204+ 1 &, x y

cos ¥ = xy/xy,

P, (cos ) =

(4.2)
and introduce B functions, we can rewrite Eq. (4.1) in the
following way:

Bg,o(a’r< +l’> )

o i
=(217,2)l/2 2 z (_l)l(ar<)—l—1/2

I=0m= —1
X I plar )T (ar _)BT™ (arx. ). (4.3)

We assume that r _ is smaller in magnitude than r_, i.e,
Irof<ir, |

Starting from Eq. (4.3), addition theorems for B func-
tions with arbitrary values of n, /, and m can be derived by
applying suitable generating differential operators. Here, we
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essentially have two different alternatives. We can first dif-
ferentiate with respect to the scaling parameter a according
to Eq. (3.11) and then apply the spherical tensor gradient
% (V) according to Eq. (3.8), or, we can first apply the
spherical tensor gradient and then differentiate with respect
to the scaling parameter a. In our opinion, the second alter-
native is to be preferred. This is partly due to the fact that we
do not have to do the first step anymore. We could show
previously that the application of the spherical tensor gradi-
ent to the addition theorem (4.3) gives the addition theorem
of the modified Helmholtz harmonics B™ ,,,"?

B” (e +1,)

o0 I8
=(21r)3/2 z 2 (_1)1,(ar<)~1,~—1/2
L=0m = — 1
X I, o1 lar YT ar )
ypr
x 3 @ (Lm + m\|Im|lym )BT (ar, ) .
L= Irznin
(44)
The summation limits / 3*" and / ** are given in Eq. (2.8).
In order to simplify the application of the generating differ-

ential operator (3.11) this addition theorem (4.4) is first
rewritten in the following way:

B” (ar_+r1,)

© 1,
=4r Y > (=Dar )"
=0

—0m=—1

of To
X I jyplar YT (r_)

<

max
IZ

x Yy @ (Lm + m,|Im|lm,) (ar, )~/?

I = Ipin

m l‘>
X Ky, 1pplar, )YT: A

(4.5)

If we now combine Egs. (3.11) and (4.5) we obtain
Bl (ar_+r)
a2n+l—1(r r )—1/2

(="t (n+ 1)

1, - <
<5 % ()
L=0m = —{ r<

o r
X Z @ (lzm+ml|lm|llm,)Y;"+”"(r—>)

L =1pin

>

n+1
X (?i- %) {GIIA w1nfar Ky 1 (ar, )} :
(4.6)

In order to be able to do the remaining differentiations we
need the following differential properties of modified Bessel
functions (MOS, p. 67),

(i i>mzv1v () =z""I,_,(2), (4.7)

z dz

(oo, o
z dz
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(l_)mz"Kv(z) =(—-1"z"""K,_,(2),
z dz

(4.9)

(li)mz—vxv(z) =(—D"z="""K,,.(2). (4.10)
z dz

In addition, we use

(% —a%)n - 2"( a(zz) ) '

Because of this relationship it is possible to use the Leibniz
formula for the differentiation of a product repeatedly. For
instance, we can write

(4.11)

1 4

n+1
(Z E) {aIII. inlar DK, ar, )}
ad

n+1
a(a) ] {[a" "L, 1 p(ar )]

X [@"* VK, \plar, )@ "5 (4.12)

n+1 n+1—
— z (n+l){(li) + qall+l/211,+l/2(ar<)]

=2n+1[

~o\ ¢ a da
q 1 qg-—-s

10 LI
s=0

X 25[ a(zz) ]Sa'_"_lz_'. (4.13)

Now, all differentiations can be done quite easily. If we use
Egs. (4.7) and (4.9) we obtain

B2t
=gh— e\ 2prioan L aain(ar,),
(4.14)
(% %)q_ salz VKL i lary)
=(=D?7%@ 9T ATK, L anlary) .
(4.15)
We also find
25[#22)]211_1._11_1
= _2)5(__11 +122—’+ 1) gl=h=h=d=1 (416

Combination of Eqgs. (4.12)-(4.16) gives

1 d\+t!
(; Z) {aIIl. rinlar K, o y(ar, )}

n+1

n+1
=> (—l)q( q )’"<+I_q11.—n—1+q+1/2(ar<)
q=0

x 3 A7)ttt ) 2
s=0 s

X Kl,—-q+s+l/2 (ar> ) .

(4.17)

Inserting this into Eq. (4.6) gives us an addition theorem for
B functions:
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Bl (ar_+r,)

47 i L

- by L<_)
o g bt Zom 2, T (r<

Jmax

x 3@ <12m+m1|1m|l,m.>Yz+m'(i—>)

L=Ipn

n+1 l
< z (—l)"(n+ )(ar< yr+i=-g-1s2
g=0 q

X II.~n*l+q+1/2(ar<)

% i 2:(?)(11 + 12; I+ 1) (ar> ya-s—172
s=0 s

XK, _4rsinlar,). (4.18)

Alternative versions of the B function addition theorem
can be derived if the expression, which is to be differentiated
with respect to a, is factorized differently. For instance, we
can choose

a111.+ wnlar K, (ar,)
= [awl'_1/211,+1/2 (ar_)]

X[a=t"VK, plar, ) ]althrETL (4.19)

Repeated application of the Leibniz formula in connection
with Eqgs. (4.8) and (4.10) yields
1 4

n+1
(; :?_;) {alII. vnar K, 1, ar, )}

n+ i n+1
= Z (_l)q( )"n<+1_411,+n+1—q+1/2(a"<)
g=0 q

v i 2S(Z)(_11+12+1+1) e

s=0 2 sa"+s
XKy qsrinlar,). (4.20)

Inserting Eq. (4.20) into Eq. (4.6) gives another version of
the addition theorem for B functions:

Bl (ar_ +r,)

_ 47 d < Ly mef F<
N (=2)"*(n+ D! I|§0m|=§:~l. (=D Yl' ("_>

<

IT!X r
X ¥ @lm+ m1|Im|Ilm1)YZ‘+'"'(r—>)

5, =17pin >
n+1 l

% Z (—1)"(”+ )(ar<)n+1_q—1/2
qg=0 q

X Il,+n+1—q+1/2 (ar<)

% zq: 2:(4)(_11 +L+1+ 1) R
s=0 s

5 2
XKy q_sinlar,). (4.21)
Next we choose the following factorization:
aly yplar DK, p(ar,)
=[a" VL 1 (ar )]
X [a """k,  \p(ar,)]a!~ 1 tE, (4.22)

Repeated application of the Leibniz formula in combination
with Egs. (4.7) and (4.10) yields
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1 9 \+!
(;E;) {a’I,,+1/2 (ar K, 1 (ar, )}

n+1

n+ _
- z (_l)q( q I)rn<+1 qII.—n—l+q+1/2(ar<)
g=0 :

min(q,Al)) rq_s
> 2‘(;’)(—A1,):———

n+s
§=0

> (4.23)
a
XKy g seinlar,),
AL={U-1+1)/2.

Because of the selection rules satisifed by the Gaunt coeffi-
cients in Eq. (4.6), Al is always either a positive integer or
zero. If we now insert Eq. (4.23) into Eq. (4.6) we obtain
another addition theorem for B functions:

B (ar_  +r1_)

41 & L

= _1 1‘le* r_<)
(—2)"+’(n+l)! llg()m‘:z_ll( ) . (r<

Izmn

x 3@ (12m+m,|lm|llm|)Y;:'+""(:—>)

min
2

L=
n+1

X 2 ( — l)q(n +l)(ar< )n+1-q~1/2
qg=0 q

X II.—n—1+q+1/2 (ar_)
min(g,Al,)

> 2‘(21)(—Al,)s(ar> yemi- 12

5=0

XKy, g ssinlar,). (4.24)

Finally, we choose the following factorization:
'l plar VK, pn(ar,)
= [a_I'A 1/211.+ 12lar )]
(4.25)

L 172 1 I, =1
[a" " 'K, p(ar, )]a' Thh,

Repeated application of the Leibniz formula in connection
with Eqs. (4.8) and (4.9) yields:

1 a n+1 !
(—C—Z- ‘5;) {all.+ w2lar K, (ar, )}
nt! n+1
= Z (_l)q( q )rn<+l_qll.+n+1—q+l/2(ar<)
qg=0

min{g,Al) ,ﬂ‘” §
> 2S(q)( — AL —— (4.26)

s=0 s
XKy _gisnlar,),
AL=(+1,-1)/2.

Because of the selection rules satisfied by the Gaunt coeffi-
cients in Eq. (4.6), Al is always either a positive integer or
zero. If we now insert Eq. (4.26) into Eq. (4.6) we obtain
another addition theorem for B functions:
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Bl (ar  +r,)

4 & L

r
= — 1)"Y'"'*(—<)
( - )'l+l(n+l)! ’Igo '"|=z—ll ( ’ r<

.
x 3 ‘2)(lzm+m1|lm|lm)Y'"+’"'(r )
r>

L= Imm

X nil (— 1)"( l)(ar yrtiza=i2

X Il,+n+1—-q+1/2(ar<)

min(gq,AlL)

> 2’(3)(—A12)s(ar> ya=e= 1

s=0
XKy _gisi12lar, ). (4.27)
Setting /=0 in the addition theorems (4.18), (4.21),
(4.24), and (4.27), and observing

(1,m,|00|lym,) = (4m)~"/%5,, 8 (4.28)

gives us the analogous addition theorems for reduced Bessel
functions. However, unlike the B function addition theo-
rems which have roughly the same complexity, these addi-
tion theorems for reduced Bessel functions differ with re-
spect to the number of inner sums. For instance, from Egs.
(4.18) and (4.21) we obtain

kn-l/z(ah' +r.|)
= (= Dr S Z (—1)Y’"*( )Y”’(r )
=om=—1 ¥ v,

% i (— l)q(n)(ar< yr—a—172
q=0 q

XA _yygirnlar,)

X i 2’(‘1)(14——1—) (ar, )?=*= 12
s=0 S 2/

XK, _ q+s+1/2(ar )

— ( — n - Im"‘ Ym
iy 8 o

I=0m= —1

X Z ( — 1)‘1(”)(ar< )n—q—l/Z
g=0 q

X Il+n7q+l/2 (ar< )

Z vq)(_ _l) q—s—1/2
XSZ‘OZ(S / > S(ar>)

XKiygosi1nlar,).

(4.29)

(4.30)

In the same way we obtain from Eqgs. (4.24) and (4.27)

]Afn valalr. +r_ |)
_(—1)"472 z (—l)Y'"‘( )y;"(.r:_)
I=0m= —1 < r.,

X z (—1)"( )(ar yroam 2

X II—n+q+1/2 (ar< Yar, )4~ ]/2Kl+q+1/2 (ar.)
(4.31)
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_(—1)"477'2 2
X 2 (—1)"( )(ar yroa— 12

X Il+n—q+1/2(ar< )(ar> )q-l/2K1~q+1/2 (ar> )
(4.32)

)
I=0m= —1 r. r,

Obviously, the addition theorems (4.29) and (4.30) have a
more complicated structure than the addition theorems
(4.31) and (4.32).

V. RELATION TO PREVIOUS WORK

Our starting point is the following expansion of the
modified Bessel function of the second kind in terms of Ge-
genbauer polynomials (MOS, p. 107):

(a|r< —-r, |)VKv(a|r< —-r, |)

=2""T(—v)(ar_)(ar, )"
X i (m—v)C, “(cos ¢)
m=0

XI,_,(ar )K, _,(ar ),

cosy=r_or, /r_r vgN, .

<'>0?

(5.1)

This expansion can easily be reformulated as an addition
theorem if the Gegenbauer polynomials in Eq. (5.1) can be
expressed in terms of Legendre polynomials. For that pur-
pose, we use®

(m2) (=), _,(—v—1/2),
cr” =
m(cos §) s;o s1(3/2),,
X 2m—4s+ 1)P,, _,.(cos¢) .
(5.2)

Here, [m/2] is the integral part of m/2, i.e., the largest in-
teger n satisfying n<m/2. If we insert Eq. (5.2) into Eq.
(5.1) and introduce a new summation variable / = m — 2s,
we obtain the following expansion of the modified Bessel
function of the second kind in terms of Legendre polynomi-
als:

(a|r< —-r, |)VKV((Z|1'< -r, I)

=2""T(—=wv)(ar_)(ar,)”
X 3 21+ 1)P,(cos )
I=0

& (—v) s (—v—1/2),
x I+ 25—
2, S(3/2)1,. (H2s=m

X I g (ar K, 4 (ar, ).

(5.3)

In the next step we use Egs. (3.1) and (4.2). This gives us an
addition theorem of the reduced Bessel functions with non-
integral but otherwise arbitrary orders v:
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k,(alr. +r. )
= (32m)"2 T (= v)(ar_)(ar, )

0 ]

r r
— Dy =y~ =
zOm—z—l( )YI (r<> I(r>)

% i (=), (—v—1/2),
s=0 S!(3/2)1+S
X (l+2s—V)II+23—v(ar< )K1+2s—v(ar> )

véN,. (5.4)

If we now assume that the order v is half-integral, v = n — §,
neN,, the innermost series in Eq. (5.4) terminates after a
finite number of terms and we obtain an addition theorem
for a reduced Bessel function with half-integral order:

+r. D
=(—1"8a[2n— D] Yar_)"~"(ar, )"~ '?

x$ % (- 1>'Y,""(r—<)Y7"('—>)
=om= ~1 r. r,
b (=m)(1/2—n),,
s=0 s1(3/2),
XU+2s—n+1/2),, 5, 1p(ar,)
X KI+23~n+1/2 (ar> ). (5.5)

This relationship is equivalent to an addition theorem de-
rived previously by Steinborn and Filter.*°

With respect to its structure, the addition theorem (5.5)
differs significantly from the alternative versions which were
derived in the last section. This is not necessarily surprising
since the derivations were completely different. However,
we want to show in the sequel that the addition theorem
(5.5) can nevertheless be obtained by differentiating the ad-
dition theorem of the Yukawa potential, Eq. (4.3), with re-
spect to the scaling parameter a. First, we consider in Eq.
(3.11) the case ! = 0, which yields

1)@~ 1(&_%)’1[(1/}_ w2lar)] .
(5.6)

Then, we rewrite the addition theorem of the Yukawa poten-
tial, Eq. (4.3), in the following way:

k, _1nlalr,

X

]}n—l/Z(ar) =(-

k_yaalr +r.|)
=d4m(ar_) " V(ar, )~ '?

<52 o)

X Lvplar DK p(ar, ). (5.7

Combination of Eqgs. (5.6) and (5.7) yields
+r.

=(— 1)"477a2"“(r< r. )2

x3 3 (—1)’Yr*('—<)Y,"’(r—>)
I=0m= —1 r< r>

1
X(__> i ntar DK ptar)}
a da

k, 1p(alr,

(5.8)
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Next, we need the following integral representation for the
product of two modified Bessel functions (MOS, p. 98):

® t—le—zt—(az+b2)/l1 (Zab) dt
t

a<b, Re(z)>0. (5.9)

With the help of the substitutions x = 2z'/2 and s = 1/f we
obtain

I (ax)K, (bx)

Hv(2az‘/2)Kv(2bz'/2)=J

0

2,[ —le— @+ b0s—X/4T (2abs)ds, a<b.

(5.10)
Combination of Eqgs. (4.11) and (5.10) yields
(l i)"{lv(ax)KV(bx)}
x Ox

_ (=D

2n+l

-]
2 2
f s lg— @+ 0Ny (Dabs)ds .
0

(5.11)

If we compare Eqs. (5.1) and (5.11) we observe that the
integral representation in Eq. (5.11) can be reduced to a sum
of products of the type I, (ax)K,, (bx) provided that we are
able to express the function s~ " I, (2abs) in terms of func-
tions of the type I, (2abs). For that purpose we use®

(&) o

o Fe+mPv—p+1)u+2m)
mmomIl(v—pg—m+1DC(v4+m+1)

X T, 4 am (2). (5.12)
If we now use (MOS, p. 66)
J, (iz) = "I (2), (5.13)
we find
zZ \#—V
— I
(2) +(D)
o Clu+m)y(u—mv),
= +2m\ m .
m;,(” C mT(v+m4+1) #+? (2
(5.14)

If we have 4 = v — k, keN,, the infinite series in Eq. (5.14)
terminates yielding

z7HM,(2)
X C(v+m—k)(—k)
=2-* +2m — k) m
mz—o v " mI(v+m+1)
XTI,y gm—i(2). (5.15)

From this relationship we may immediately deduce

s~ "I, (2abs)

Flv—n+0(—n),
ti(v+t+1)

= (ab)" i (v+2t—n)
t=0

X I, _,(2abs). (5.16)

If we combine Egs. (5.10), (5.11), and (5.16), we find a
differentiation formula for the product of modified Bessel
functions which seems to be new:
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(i i)n{lv(ax)Kv(bx)}
x Ox

(—ab)" F'v—n+8(—n),
ST 2 & T(r+i+4 Do

v+2t-mI, ,,_,(ax)K, , _,(bx),
a<b.

™M=

(5.17)

With the help of this relationship the remaining differentia-
tions in Eq. (5.8) can be done in closed form and we obtain

I}n—l/Z(alr< +r. )
— (47T/2")(ar< )n— I/Z(ar> )n—l/2

0 I
x¥ ¥ (- 1>'Y;"*(';—<)

I=0m= —

r " 1
X Yl —= (l 2t — —)
I(r> )Igo + " 2

(—m)D(—n+t+1/2)
1+t +3/2)

iv2e—n+1nar)

X Kiyonirnlar,). (5.18)
Now we only need the relationship
_ nan—+1 —

TU+1+3) Qn—DI 11(3/2),,,

to see that Egs. (5.5) and (5.15) are indeed identical.

It is, of course, possible to derive alternative addition
theorems for B functions by applying the spherical tensor
gradient % *(V) to Eq. (5.18). However, this would lead to
expressions less compact than the addition theorems derived
in the last section. Consequently, we shall not consider them
explicitly here. In the same way, we could apply the spheri-
cal tensor gradient to the addition theorems (4.29)-(4.32)
for reduced Bessel functions. But, again we do not see that
the results would be more compact than the B function addi-
tion theorems we already know.

All addition theorems in this paper have the following
general structure:

oo [ T
froo+e)=73 3 (=D (_)
L=om=—1 r.
e

X ¥ Lm+mlim|lm,)

L= [pin

r
XFi, (r.r, )Y;j'*’"'(—>). (5.20)
B B r

>
Since the function f}* is, by assumption, an irreducible
spherical tensor,

ST =@, (nNYr(x/r), (5.21)

the structure of the angular momentum sums in Eq. (5.20)
containing spherical harmonics and Gaunt coefficients is de-
termined by group theory.?"**%” Only the “radial functions”
F 5. , (r_,r. ) are specific for the function /7" that is to be
expanded.

In the literature, several general methods for the deter-
mination of the F;, (r_,r, ) are described. For instance,
Ruedenberg?' and Silverstone?> showed how an addition
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theorem for an irreducible spherical tensor f7' can be ob-
tained with the help of Fourier transformation. In this ap-
proach, F ;. L (r ,r, ) is given as a radial integral involving
two Bessel functions of the first kind and the radial part of
the Fourier transform of /7". Apart from some more or less
trivial cases, the remaining radial integrals are extremely
complicated and it is very hard to obtain explicit expressions
for them.

Another possibility for the determination of the radial
functions F|, (r_,r. ) in Eq. (5.20) consists of the re-
arrangement of Taylor expansions. This was discussed by
Santos,®® Bayman,®® and Niukkanen.** In this approach,
Fi,(r_,r, ) is given as an infinite series involving powers
and differential operators which act upon the radial part of
ST Again, only relatively simple addition theorems could be
derived with the help of this approach.

The radial functions F;, (r_,r, ) in Eq. (5.20) are
uniquely determined since they serve as coefficients in or-
thogonal expansions. However, in view of the complexity of
these F 5. ., (r.,r. ) and since several different approaches,
which all involve complicated mathematical operations, are,
at least in principle, available for their determination, it is
likely that also several different explicit expressions for a
radial function F 5, , (r.,r, ) can be obtained, if such an ex-
plicit expression can be derived at all. The numerous differ-
ent versions of the addition theorems of B functions, which
either have been derived already or which probably still can
be derived, are a striking example for the nonuniqueness of
the functional form of these F;, (r_,r. ).

In view of this multitude of different addition theorems
for the same function it would, of course, be desirable to
evaluate the relative merits and disadvantages of the differ-
ent addition theorems for the same function. However, we
believe that a context-free evaluation of the different ver-
sions of an addition theorem will only lead to conclusions
that are more or less trivial and that not much insight can be
gained that way. For instance, it is immediately obvious that
the addition theorems (4.29) and (4.30) for reduced Bessel
functions are more complicated than the addition theorems
(4.31), (4.32), and (5.5), since they contain two nested in-
ner sums instead of one, but we are definitely not able to
differentiate among the remaining three addition theorems
(4.31), (4.32), and (5.5) on the basis of general consider-
ations alone, i.e., without explicitly specifying the context in
which they are to be applied.

Because of the same reasons it is also relatively hard to
compare the different variants of the addition theorem for
Slater-type functions not only among themselves but also
with the addition theorems for B functions which because of
Eq. (3.13) can be used for the construction of new addition
theorems for Slater-type functions. A further complication
is that according to Silverstone and Moats*” many addition
theorems, which are based upon Lowdin’s a function meth-
o0d,? are not of the form of Eq. (5.20). This is due to the fact
that in the original form of Loéwdin’s a function method a
special orientation of the coordinate system was assumed
that leads to some simplifications among the spherical har-
monics and the Gaunt coefficients in expansions of the type
of Eq. (5.20). Consequently, the addition theorems for
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Slater-type functions published by Sharma,**¢ Duff,?’
Jones and Weatherford,?® and Rashid?*° are not directly
comparable with the addition theorems of this paper since
they assume Lowdin’s?® simplifying orientation of the coor-
dinate system and are therefore somewhat less general.

It is also a typical feature of the addition theorems men-
tioned above that they do not contain modified Bessel func-
tions as the addition theorems of this paper do. Instead they
contain products of the type e = “"<e ~ “"> multiplied by pow-
ers of r_ and r_ . The equivalence of these two different
approaches can be proved quite easily. We only need the
following representations for modified Bessel functions with
half-integral orders™:

Iy (ny12(2)

(=D"n+w)!

= (272)“/2{e‘
v=o Vi(n —v)1(2z)"

_ e (n 4 v)! ]
3 SN Sl i LN 5.22
+ e vgo w(n —v)1(22)" ( !
172 i !
" _ 1) P N Lk . L Y
+1/2(z) (22 ¢ VZO v(n — v)I(2z)" ( !

Most closely related with our approach is an addition
theorem for Slater-type functions that was derived by Silver-
stone?? using Fourier transformation and that also contains
products of modified Bessel functions I and K. In fact, it can
be shown that Silverstone’s addition theorem?? can also be
obtained by differentiating the addition theorem of the
modified Helmholtz harmonics B ., Eq. (4.4). The gen-
erating differential operator, which has to be used, can be
obtained by combining*®

n—1—1
xnm,l(a,r) =a"—1(_%) a~ X;':_ 1,1(0"1') (524)
and
BT (ayr)
=[R2+ DY ()
= alt! {ii)l+lal+1Bm @
(—=2)'"*'(I+ D!'\a da " u(apr).
(5.25)
This yields
Xmi(a,r)
n—i-1 I+1
=(—a)"_l(i) a(ii)+ it
da a Jda
X B, (a,r). (5.26)

As we could show in this paper, the differential operator
(a™'d /3a) poses no particular problems. However it is by
no means a simple task to obtain closed-form expressions if
one has to apply higher powers of 3 /da to products of modi-
fied Bessel functions as they occur in the addition theorems
for BT,. It is probably much simpler to proceed as we sug-
gested, i.e., to combine Eq. (3.14) with one of the addition
theorems for B functions.

Finally, we would like to remark that we are not aware
of any reference dealing with pointwise convergent addition
theorems of the other sets of exponentially declining func-
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tions, which are defined in Egs. (3.15), (3.17), (3.19), and
(3.22). The addition theorems of B functions in combina-
tion with Egs. (3.16), (3.18), (3.21), and (3.24) allow a
convenient and systematic construction of addition theo-
rems for these functions. This should simplify the applica-
tions of these exponentially declining functions in all situa-
tions in which multicenter problems can occur, especially in
LCAO-MO calculations of molecules, clusters, and solids.

ACKNOWLEDGMENT

E.O.S. thanks the Fonds der Chemischen Industrie for
financial support.

'E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Chel-
sea, New York, 1965), Chap. IV.

M. E. Rose, J. Math. Phys. (Cambridge, MA) 37, 215 (1958).

3M. 1. Seaton, Proc. Phys. Soc. London 77, 184 (1961).

*Y.-N. Chiu, J. Math. Phys. 5, 283 (1964).

R. A. Sack, J. Math. Phys. 5, 252 (1964).

6]. P. Dahl and M. P. Barnett, Mol. Phys. 9, 175 (1965).

E. O. Steinborn, Chem. Phys. Lett. 3, 671 (1969).

8E. O. Steinborn and K. Ruedenberg, Adv. Quantum Chem. 7, 1 (1973).

R. A. Sack, SIAM J. Math. Anal. 5, 774 (1974).

198, R. Judd, Angular Momentum Theory for Diatomic Molecules (Aca-
demic, New York, 1975), Chap. 5.

''R.J. A. Tough and A. J. Stone, J. Phys. A 10, 1261 (1977).

'2E. J. Weniger and E. O. Steinborn, J. Math. Phys. 26, 664 (1985).

"3B. Friedman and J. Russek, Q. Appl. Math. 20, 13 (1954).

143, Stein, Q. Appl. Math. 19, 15 (1961).

'50. R. Cruzan, Q. Appl. Math. 20, 33 (1962).

M. Danos and L. C. Maximon, J. Math. Phys. 6, 766 (1965).

'7R. Nozawa, J. Math. Phys. 7, 1841 (1966).

'8A. K. Rafiqullah, J. Math. Phys. 12, 549 (1971).

E. O. Steinborn and E. Filter, Int. J. Quantum Chem. Symp. 9, 435
(1975).

2°P_ J. A. Buttle and L. J. B. Goldfarb, Nucl. Phys. 78, 409 (1966).

2IK. Ruedenberg, Theor. Chim. Acta 7, 359 (1967).

22H. J. Silverstone, J. Chem. Phys. 47, 537 (1967).

3P, O. Léwdin, Adv. Phys. 5, 96 (1956).

29R. R. Sharma, J. Math. Phys. 9, 505 (1968).

K. J. Duff, Int. J. Quantum Chem. 5, 111 (1971).

26R. R. Sharma, Phys. Rev. A 13, 517 (1976).

27H. J. Silverstone and R. K. Moats, Phys. Rev. A 16, 1731 (1977).

28H. W. Jones and C. A. Weatherford, Int. J. Quantum Chem. Symp. 12,
483 (1978).

M. A. Rashid, J. Math. Phys. 22, 271 (1981).

3OM. A. Rashid, in ETO Multicenter Molecular Integrals, edited by C. A.
Weatherford and H. W. Jones (Reidel, Dordrecht, 1982), p. 61.

3'N. Suzuki, J. Math. Phys. 25, 1133, 3135 (E) (1984).

32A. A. Antone, J. Math. Phys. 26, 940 (1985).

3N. Suzuki, J. Math. Phys. 26, 3193 (1985).

3N. Suzuki, J. Math. Phys. 28, 769 (1987).

3°M. P. Barnett and C. A. Coulson, Philos. Trans. R. Soc. London Ser. A
243, 221 (1951).

36M. P. Barnett, in Methods of Computational Physics, edited by B. Alder, S.
Fernbach and M. Rotenberg (Academic, New York, 1963), Vol. 2, p. 95.

7F. E. Harris and H. H. Michels, J. Chem. Phys. 43, S 165 (1965).

38F, E. Harris and H. H. Michels, Adv. Chem. Phys. 13, 205 (1967).

3E. 0. Steinborn and E. Filter, Theor. Chim. Acta 38, 273 (1975).

“OE, Filter and E. O. Steinborn, Phys. Rev. 18, 1 (1978).

4'W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for
the Special Functions of Mathematical Physics (Springer, New York,
1966). This reference will be denoted as MOS in the text.

4?E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cam-
bridge U. P., Cambridge, England, 1970), p. 48.

43L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Phys-
ics (Addison-Wesley, Reading, MA, 1981), p. 71, Eq. (3.153).

*A. W. Niukkanen, J. Math. Phys. 24, 1989 (1983).

“M. A. Rashid, J. Math. Phys. 27, 549 (1986).

46E. J. Weniger and E. O. Steinborn, J. Math. Phys. 24, 2553 (1983).

E. J. Weniger and E. O. Steinborn 783



4E. J. Weniger and E. O. Steinborn, Comput. Phys. Commun. 25, 149
(1982).

4SE. J. Weniger, Ph.D. thesis, Universitiit Regensburg, 1982. A short ab-
stract of this thesis was published in Zentralbl. Math. 523, 444 (1984),
abstract No. 523-65015.

49E. J. Weniger and E. O. Steinborn, J. Chem. Phys. 78, 6121 (1983).

S0E. J. Weniger and E. Q. Steinborn, Phys. Rev. A 28, 2026 (1983).

SIE. J. Weniger, J. Grotendorst, and E. O. Steinborn, Phys. Rev. A 33, 3688
(1986).

52y, Grotendorst, E. J. Weniger, and E. O. Steinborn, Phys. Rev. A 33, 3706
(1986).

53E. Grosswald, Bessel Polynomials (Springer, Berlin, 1978), and refer-
ences therein.

34A. W. Niukkanen, J. Math. Phys. 25, 698 (1984).

55A. W. Niukkanen, Int. J. Quantum Chem. 25, 941 (1984).

36E. J. Weniger, J. Math. Phys. 26, 276 (1985).

STE. A. Hylleraas, Z. Phys. 54, 347 (1929).

58H. Shull and P. O. Léwdin, J. Chem. Phys. 23, 1392 (1955); P. O. Léwdin

784 J. Math. Phys., Voi. 30, No. 4, April 1989

and H. Shull, Phys. Rev. 101, 1730 (1956).

9E. Filter and E. O. Steinborn, J. Math. Phys. 21, 2725 (1980).

SOF. A. Hylleraas, Z. Phys. 48, 469 (1928).

$'M. Rotenberg, Adv. At. Mol. Phys. 6, 233 (1970).

©2S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics
(Am. Math. Soc., Providence, RI, 1963).

$3B. Klahn and W. Bingel, Theor. Chim. Acta 44, 9 (1977); 44, 27 (1977).

$T.-1. Shibuya and C. Wulfman, Proc. R. Soc. London Ser. A 286, 376
(1965).

$5E. D. Rainville, Special Functions (Chelsea, New York, 1960). See p. 284,
Exercise 4.

%G. N. Watson, 4 Treatise on the Theory of Bessel Functions (Cambridge
U.P., Cambridge, England, 1944), p. 139.

S7E. Q. Steinborn and E. Filter, Theor. Chim. Acta 52, 189 (1979).

8F. D. Santos, Nucl. Phys. A 212, 341 (1973), Appendix 1.

“B. F. Bayman, J. Math. Phys. 19, 2558 (1978), Sec. III.

"See Ref. 66, p. 80.

E. J. Weniger and E. O. Steinborn 784



On the dynamics of singular, continuous systems

Y. Gller

Physics Department, Middle East Technical University, Ankara, Turkey
(Received 27 July 1988; accepted for publication 30 November 1988)

The Hamilton-Jacobi theory of a special type of singular continuous systems is investigated by
the equivalent Lagrangians method. The Hamiltonian is constructed in such a way that the
constraint equations are involved in the canonical equations implicitly. The Hamilton-Jacobi
partial differential equation is set up in a similar manner to the regular case.

I. INTRODUCTION

Studies on singular systems started around the 1950’s.
Dirac! first investigated the discrete singular systems setting
up the basic structure. Bergmann® and his collaborators
stressed on the relation between invariance principles and
constraints in field theories. In fact, their efforts were to con-
struct a Hamiltonian approach of general relativity to quan-
tize the theory since the Einstein’s theory of gravitation is a
singular theory due to its general covariance. Singular field
theories became the center of interest for physicists especial-
ly after the pioneering work of Faddeev® who introduced the
Feynman path integral quantization of singular systems.
Nowadays singular systems find a very wide range of appli-
cations in theoretical physics. An invariance under a global
gauge transformation implies a singular theory. Hence,
starting from the electromagnetic theory, all gauge theories
have singular nature. String theories, which are hot research
subjects of our time, are other typical examples of singular
field theories.

The aim of this work is to obtain a valid and consistent
Hamilton-Jacobi theory of a special type of singular contin-
uous systems. In fact, this work is a continuation of previous
papers*’ in which we studied the regular fields and singular
discrete systems. The main trend in the treatment of singular
systems is, following Dirac, to start with the Lagrangian and
then pass to phase-space-defining canonical momenta.
Equations of motion are given by Poisson brackets defined in
the full phase space. Unfortunately this treatment does not
lead to a valid Hamilton—Jacobi theory that is essential for
the dynamics of any system. Thus we need the necessity of
elaborating singular continuous systems by the equivalent
Lagrangians method.

This paper is arranged as follows: In Sec. II the Hamilto-
nian of a singular continuous system is determined by the
method of equivalent Lagrangians, and the first set of the
canonical equation is obtained. In Sec. III an alternative ap-
proach for singular systems is displayed. In Sec. IV it is
proved that the Hesse determinant of the Hamiltonian has
the rank 4n — p. A general discussion is given in Sec. V.

1. EQUIVALENT LAGRANGIANS METHOD

Singular systems are defined as those systems for which
the Hesse determinant

dL
94, 9g;
has the rank #n — p, where p < n. The first step in the treat-

. hj=1,..n, (2.1)
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ment of singular systems is to demonstrate that any singular
system may be considered as a system of p constraints. In
other words, the dynamics of singular systems is the dynam-
ics of constrained systems. Let
, L
i( iy "t ) ="
1i(g;.4; %
Since the rank of the Hesse determinant is #n — p, p of the
functions f; may be expressed as

fa =Ka(f;z)’

Thus, one may treat p equations (2.3) as the constraint equa-
tions, i.e.,

Gulbani) = 5= Ku(52) =0
9%, 9,

The Hesse determinant of a continuous system* is a

4nX4n determinant formed by the partial derivatives of

L(®;,d,P;x,) with respect to

(2.2)

i

a=1,...p, a=p+1,.,n (2.3)

24)

q>kE ” (Dl=aq>’9 man)”

(;9;0 ox, ox, (2.5)
b, =—L iklmr=1,..,n.

Ox,

A continuous, singular system has a Lagrangian L such
that the rank of determinant
aL
ad, ad,
is 4n — p, where p < 4n.
The investigation of systems with constraints had been
done in a previous work.> Another version of the same meth-

od will be employed in this work. The starting point of this
method is the function

M(x,,®,9,.4,) =L(x,,®,®,,) +41,G,,

where i runs from 1 to n» and v from O to 3.
In this work we will be interested in cases for which
aG,,

3P,
This definition reduces the variational problem to an ordi-
nary calculus problem. Equivalence of Lagrangians L 'and L
where

, po=1,.,4n, (2.6)

2.7)

#0, af=1,..,p. (2.8)

ds, (2.9)
dx, )

implies that the necessary condition to have a local mini-

L'=L—
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mum of L’ in a certain neighborhood of <i>p =1, (®;x,)
with constraint equations (2.4) leads to the fundamental
equations

M LA} a’.a= o
35, _ IM(x,, @ hnd m) 2.10)
b, P,
aSI‘ =M(xv?q)iilad>a =1’0)
ox,,
’¢i’ﬂ’aq‘)a= o
Ly M o). 2.11)

P aq)p

One should notice that the theory depends on multipliers A, .
Hence we will treat the problem as if there are 5n +4 + p
variables ®,, d)p, x,, and A,. The existence of constraints
actually reduces the number of independent variables to
5n + 4.

To pass to phase space one introduces the canonical mo-
menta as

M oM

=p,, = =22 p=1,.4n (2.12)
b=l = 300, /0%,y a®,)  ©
oM
.= =G, =0. (2.13)
Pe =51
Since the determinant of the matrix
M
%, 0, i
b, |, 96=1,.p (2.14)
aG,
o, O

is not zero one may solve Egs. (2.12) and (2.13) for Ci>p and
A, as

q)p =¢p(¢i’pa’pa’xv)3 A’a =Xa(q)i’pa’pa’xu)' (215)
In this notation the fundamental equations read as
as
P, =—r, (2.16)
o9,
as
ax“ =M—p,¢,. 2.17)

"
Defining the Hamiltonian as

Hl(xu’q)i’Pp’pa)
= “"M(xuy(bp =@ps /1a =Xa) +pp¢p + PaXas

(2.18)
some partial derivatives of H, may be evaluated as
OH, _ _M
Ix, dx,
_OM 99, M K. vp 9%,
e, dx, I, ox, ° ox,
1 aM
L= - 2.19
+Pa dx, ax, ¢ )
OH, oM M 9p, M .
3%, P, b, b, P4, 3P,
op, O a oM
= — , 2.20
+p, a0, + /7. 30, 3, ( )
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OH, _ oM 99, oM .
ap, %, p, A, Ip,
op, o 4
+dp, 2= +p, =, . (2.21)
7 ap, ap, ?

Actually (p) equations (1.13) reduce the Hamiltonian
H, to

H(xvrcbi’pp)EH] (xv’q)i’pplpa = 0) = - M+pp¢p
(2.22)

A similar calculation shows that Egs. (2.19)—(2.21) are val-

id for H also, i.¢.,

JH oM OJH _ oM JH — b

ox,  dx, v, o®, " dp, °
There is still a third way to define a Hamiltonian H that

is completely equivalent to (2.18). It is obtained by replac-

ing the expression (1.7) in (2.18). The explicit form is

H(x,,®.p,) = — L(x,,,®, =¢,) +p,®,.  (224)

Although H is similar to the Hamiltonian of a regular
system one should keep in mind that the generalized mo-
menta p,, are defined by the function M not by L.

The definitions (2.18) and (2.24) are completely equiv-
alent dynamically. In other words both definitions yield to
the same partial derivatives (2.19)—(2.21). In fact,

(2.23)

6H, JdL JL 9, _
dx, dx, I, ox, “
aG 4G, dp ) dop
X | — — £, 2.25
(8x,, 3%, ax, ) 7 ax, (2.29)
OH, _ 6L _ JL 9,
o, b, IP, 3, -
G, JG, afp,,) ap,
X - , 2.26
(aq>,. 36, a0, ) Prge, 320
I, 9P,
OH_ L % g 4p X,
app a¢0’ app a P
G, d
x(a. « _"1). (2.27)
a®, dp,
Due to the constraint equations
G, (x.,®,®, =p,) =0, (2.28)
terms in the parentheses are zero, thus
oH, _oH_ M 2.29)
dx, Ox, x,
JH, - JH _ _ oM , (2.30)
b, P, oo,
JH, JH
ap, ? ap,

lll. AN ALTERNATIVE APPROACH FOR SINGULAR
SYSTEMS

The condition (2.8) implies that the constraint equa-
tions

G,(x,®,$,)=0 (3.1)
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may be solved for @, in terms of x,,®,, and b, as
b, =V, (x,0,0,), a=p+1,.,4n. (3.2)

Thus instead of the Lagrangian L(x,,,<I>,~,d>,, ) one may
as well start with the Lagrangian

L(x,,®,¥,) =L(x,,®,d,,o,=V,). (3.3)

It is obvious that the constraint equations are intro-
duced in L implicity. In this approach the system defined by
the Lagrangian L(x,,,d)i,d)p) and (p) constraint equations
(3.1) is considered as a system described by the regular La-
grangian L that has nonvanishing Hesse determinant.

To pass the phase space one should be able to express d>
in terms of x,,,®;, and P,» Where p,’s are defined as (1. 12)

36,

P = :il a(:if tha g 4
36

Pe= = (3

Contracting (3.4) withd¥, / 8‘1’,, and addingitto (3.5) one
obtains

av,,
b, = (aL+aL )+,1ﬁ

ab,  adb, ad,
3G; 3G, awa) «
: L) 2. 3.6
X(a¢a+a¢a 3,) P 39, (6)
The identities
G,(x,®,b, =V, ,&,)=0 3.7

make the second parentheses equal to zero. So, one gets
4n — p equations
dL _p, e
a¢a “ aéﬂ ’
which are independent from A,,. Solving them for ®,’s as
D, =@, (x,,P.p,), (3.9)

we have achieved to express <I> in terms of P Besides, these
expressions make it possible to write &, ’s in terms of P, as

<pa = @q (xv!cbi’(ba —¢a) =@q (qu)npp)- (310)
In this approach the definition of the Hamiltonian reads as

H(x,,®,p,) = — L(x,,®,®, =@,) + PoaPu + Pua-
(3.11)

P = (3.8)

This definition again leads us to the first set of canonical
equations. In fact,

JH JdL dp, 99, op,
9. 2 +p, +p, —+ . (3.12)
I, o, ap, TP G, TP g,
Making use of (3.8) one expresses dL /6@,, as

dL av,

= 3.13

2%, Py + Do 5%, " (3.13)
Hence (3.12) takes the form

JH

=@ = . 3.14
po . ,, ( )

In the same manner, one may show that
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dH
P
Now to check the equivalence of the Lagrangians L and

L one should demonstrate that the Hamiltonian obtained
from L with p constraint equations

T,=®,—-¥, =0 (3.16)
coincides with the Hamiltonian (3.11). This coincidence
will be exhibited in the following section.

As in the previous case one should start with the func-
tion

=@, = (3.15)

M(x,,®,9,1,) =L(x,®,d,) +1,T,. (3.17)
By introducing the canonical momenta as
- M _JL - dY,
B — Ay =, 3.18
Pe= 36, " od, " 30, 18
M
Py =——=2A, 3.19
P 30, ( )
one arrives at the relation
_ _dL _ 9Y¥,
e = —— = Py —— . 3.20
Pa=36, P39, (320

By comparing relations (3.20) and (3.8) one deduces that
two definitions of generalized momenta p, and p, are the
same, i.e.,

Pa =Pas Do =Pa- (3.21)
Hence one may solve Egs. (3.20) for <i>a as
¢a = a (xu)¢i’ ),
¢ Pe (3.22)
q’a = ‘I/a (xv’cbi’¢a = Wu ) = ¢a (qu)ipp )'
The Hamiltonian derived from L is
FI(XU "bi’l_’p) = - Z(xu’q)i’(ba =@,)
+ 1_’0 ‘Ila + pa ¢a
= _Z+pa¢a +pa¢7a=H' (323)

This treatment reveals the fact that the Hamiltonian of a
constrained system is independent from the Lagrangian that
we start with. In this sense both Lagrangians L and L are
completely equivalent.

IV. DETERMINATION OF THE HESSE DETERMINANT
OF H(x,,®,p,)

Another point to be specified is that the Hamiltonian of
a constrained system with p constraint equations has the
rank 4n — p. To demonstrate this let us start with Egs.
(3.14), which are the first set of canonical equations of mo-
tion. Due to the condition

a
\ Pa | 20 (4.1)
apy
the identities
0, =, =8 (4.2)
ap,
imply that
Y. Guler 787



d*H

#0. (4.3)
apa apb
Besides
b, =9, = oH _ \I/a(x,,,fb,.,d)a = 3H). (4.4)
P, ap,

By taking the partial derivatives of the both sides of Eq.
(4.4) with respect to p, one obtains

d*H _d¥, 3°H

= — s (4.5)
dp.dp, 9P, dp,dp,
which implies that the rank of the determinant
2
_O°H (4.6)
p, Ip,

is at most 4n — p. Due to the condition (4.3) we deduce that
the rank of the Hesse determinant is actually 4n — p.

V. CONCLUSION

As it was stated in the Introduction, our main goal is to
construct a valid Hamilton-Jacobi theory of singular, con-
tinuous systems. To achieve this goal we start with the equiv-
alent Lagrangian L’ and the necessary condition to have a
local minimum of L ' leads us to the fundamental equations
(2.10) and (2.11). The phase-space treatment reduces the
variational problem to the solution of the Hamilton—Jacobi
partial differential equation (HJPDE),

08y _ _ (q)“xv,i?’zf‘_),
ax, a0,

We stress on the fact that the definition of the Hamilto-
nian is independent of the Lagrangian that we start with. In
other words, both Lagrangians L and L are dynamically
equivalent. The first set of the canonical equations (3.14)
and (3.15) directly follow from the definition of the Hamil-

(5.1)
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tonian just like in the regular case. One point that should be
clarified is that the constraint equations G, = 0 are implicit-
ly included in (3.14) and (3.15). Thus the rest of the theory
is completely the same as in the regular case. If S are any set
of solutions of the HIPDE then the solutions of Eqs. (3.14)
and (3.15) are the extremals of the action. This formulation
leads us to the second set of the canonical equations
P _OH
ox, dP,
as in the regular case. The only difference between the regu-
lar and the singular cases is in the definition of the general-
ized momenta. In the singular case they are defined as

(5.2)

oM
= 5.3
Py 3%, (5.3)
contrary to the usual definition
dL
=— (5.4)
Pr =50,

Of course one should keep in mind that all of these calcula-
tions are based on the condition (2.8). The most general case
will be studied in a subsequent paper.
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The exact solutions for the discrete Boltzmann models are sums of similarity shock waves: at
least three for the (2 + 1)-dimensional solutions (two spatial coordinates). Here, for the
three-dimensional, six velocities, Broadwell model shock waves solutions are also constructed.
The difficult problem is the determination of solutions with positive density. It is proven that
in the arbitrary parameters space, from which the solutions are constructed, there exists a
domain leading to positivity. As an illustration, a numerical example is discussed. In the spatial
coordinate plane both shock waves along one axis and bumps along the other are observed.
The movement of these structures with time is discussed.

I. INTRODUCTION

For the discrete Boltzmann models,' the velocity V can
only take discrete values v;, |v;} = 1,i = 1,...,2p with p cou-
ples of opposite velocities v,; + v,, =0, i = 1,...,p. To each
velocity v, is associated a density N, (x,¢) (x spatial coordi-
nates X ,X,,..., X, ).

The simplest solutions are the similarity shock waves
solutions

N, =ny +n,;/(1 + dexp(pt+vyx)), d>0, (1L1)
with y-x = 3y, x,, while exact multidimensional solutions
have been found simply as sums of such solutions

R
N; =ngy + —,
2D,

J

D, =1+d explpt+v,X),
(1.2)

with j,., = 3 for the (2 4 1)-dimensional solutions (two
spatial coordinates).

Three classes of exact (2 + 1)-dimensional solutions
are known: (i) a solution relaxing toward nonuniform Max-
wellians,? (ii) semiperiodic solutions,? (iii) shock waves.?
Three models have been investigated: the 4v, planar model,"
the 6v, three-dimensional Broadwell model,’ and as a gener-
alization, in a p-dimensional space, an hypercubic model.?

Unfortunately, shock wave solutions, which physically
are the most interesting ones, have not been obtained for the
Broadwell model. This model is the most popular one and
the most studied. Multidimensional solutions are more diffi-
cult to handle for the Broadwell model than for the 4v; one
(for which shock wave solutions are known,*) the main rea-
son being that the Broadwell model has two independent
quadratic collisions terms. With two collision terms we dou-
ble the number of constraints and it is not clear that we still
have sufficient freedom for the construction of solutions.
Another difficulty, present for all multidimensional solu-
tions, is the necessity to build up positive densities. When the
number of densities increases (four for the 4v; model and six
for the Broadwell one) then the number of constraints for
positivity increases too.

Our goal is not to construct the most general shock wave
solutions but only to prove that such solutions exist. Due to
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the two abovementioned difficulties, we simplify, as much as
possible, our class of solutions.

For the Broadwell model, the three velocities v,; |,
I =1,2,3 are along the three Ox; axis and the six densities
satisfy the equations

Ny, +le|
= N, — N,,, = Col, = N,N, + NsN, — 2NN, ,
Ny, + N}xz
= N,, — N,,, = Col, = N\N, + N;N, — 2N,N,
(1.3)
Ns, + Ns,,
=Ny —Ney = =Ny, =Ny, —N,, — Ny, .

Here, we construct a simple class of solutions with four
independent densities: Ny = N,, N; = N,, and

(Nl)z(n()l) +(”|1 nll)(l/Dl)_*__l_(n}l),

N, Rz ny, n,/\1/D, Dy \n3,
(N3) _ (”03) 4 (”ls nl4)(1/Dl) i _1_(’133) ,
N, No4 my  n3/\1/D, Dy \ny,

Y X =7 X, + Va2 (X + X3) = 3,

VX = —) YV3X =¥3X + V(X + X3) .

(1.4)

We note that in the three spatial coordinates, the solutions
depend only on two coordinates x, and x, + x, so that we
can discuss as well the properties in an (x,y) coordinate
plane (7,73, #7273).

The positivity study is simple in a one-dimensional coor-
dinate space. If the two asymptotic shock limits along the x
(or y) axis are positive, then we can manage the d; > 0 pa-
rameters in D; so that positivity is preserved along the whole
x (or y) axis. In a two-dimensional coordinate space we
must control the positivity in all the asymptotic x,y direc-
tions of the plane. However a generalization of the one-di-
mensional result remains. The asymptotic shock limits be-
come plateaus in the plane, and it was proved (Appendix A
of Ref. 3) that, if these limits are positive, we can still choose
d such that positivity be preserved in the whole x,p plane.
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For each density &; of the (1.4) type, there exist four asymp-
totic plateaus that must be positive,

IV=ny+ n; >0,

SY=3%4n,;>0, i=1,.,4 j=12
The principle of the positivity proof is then simple. We must
express the 16 Z, in terms of the arbitrary parameters that
built-up the solutions and prove that there exists a positivity

domain in the arbitrary parameters space. For (1.4) solu-
tions we put n,, = 1, the two arbitrary parameters being

(1.6)

(1.5)

(s =ny/nyn0,)

and we restrict our positivity study to s€[0.9,1].

In Sec. IT we contruct a class of positive solutions of the
(1-4) type (all the cumbersome details are written down in
the Appendix). The main ingredient that allows an analyti-
cal proof (already present for the 4v; model Ref. 3) is the
following: all asymptotic plateaus are factorized out as a
product of two first-order n, factors of the type

ny2; = Q0 (8) (g3 — B, (s)ng,)(ng; — 1B, (5)) . (1.7)

Thus, to verify the positivity of Z,, it is sufficient to check the
positivity of each factor. The n3, coefficients are s dependent
while the roots are n; { = 1,2 multiplied by s-dependent fac-
tors. In principle we have 32 such B,,, however, invariance
properties allow us to calculate only six of them and to de-
duce the others. First for each 2%,i,,k, fixed we determine
the ny; interval in which the =¥ are positive and we study the
intersections of these 16 n,; intervals. Second n,; being con-
structed from (n,,,s) the final result (Theorem 4) is of the
following type: if s€(0.9,1) and 7., has well-defined s-depen-
dent lower and upper bounds then the 16 =¥ are positive [see
Fig. 1 for the (s,n,, ) positivity domain].

Asanillustration, in Sec. I1, we study a numerical exam-
ple, with physical structures different from those of the ex-
amples studied in the 4v, model.? Similarity shock waves
are, in coordinate space, like kinks. For the solutions (1.4)
or those of Ref. 3, the first two components depend on only
one spatial coordinate D, =1+ dj exp 7;y (at £ = 0). Here
7, = — 7, = | whilein Ref. 3 the two 7; have the same sign.
These solutions are sums of two kinks in the y variable and
one (third component) in the x variable. If, like here, the
two 7; are opposite, the y dependence is no longer like a
shock wave sum of two kinks but like a sum of a kink and an
antikink. So for the present solutions (1.4) we observe a
shock wave along the x axis and a bump along the y axis.
Deformations of these initial time structures, when the time
is growing, are observed: the shock part moves in the coordi-
nate space with its shape practically unchanged, while the
bump spreads out.

Il. CONSTRUCTION OF POSITIVE SOLUTIONS

All details are given in the Appendix and we briefly re-
port the main results. For (1.4) type of solutions, due to
Col, + 2Col, = 0 and N, (x,,x, + x5,t), simplifications oc-
cur in the Broadwell model quantities (A1). We construct
the (2 + 1)-dimensional solutions in two successive stages:
first (1 + 1)-dimensional solutions as sums n,, + Zn;/D;,
J = 1,2 of the two first components and second we add the
third component n,,/D;.
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A. Algebraic construction of the two first components

There exist eight relations { written down in (A2)] for
11 parameters ny,,n,,,p,7;, leaving three arbitrary ones. We

choose
ng, =1, 2.1)

as the arbitrary parameters and construct all others in
successive steps.

(i) First we define s-dependent intermediate parameters
Ay =ny/ny, S =05+ 0, fori=34,

2(1+458)= —s+8, 8§=5+4(1+5)(1 +5)?,
=5 +J1+5+Fs/(1+5),

s=n;/nyy, Ny

Hia=5 —Hy.
(2.2)

(ii) Second ny, = ng,ny,/ny; while ny; and n,, can be
obtained from the arbitrary parameters

293 = —p + U+ dngng,

tu'(ﬁm_ 7_113) = (n()] - noz)(l -y,
_ - (2.3)
Ay = ng)S + Ny — N3y — Roalys,

A =Hpny,—s.

(iii) Third, with the help of {2.2) and (2.3), we con-
struct all »n,, parameters from (2.1): n,,=sn,,
n,; =n;n,, i = 3,4, and the frequency p and wave vector
¥1,¥, from the n,; [see (A3)].

B. Algebraic construction of the third component

There exist seven parameters n,;,0,,7,; and seven rela-
tions (A7). This means that we must build up these param-
eters from the arbitrary ones s, n,,.

(1) First we define s-dependent intermediate parameters
Z=n3,/ny, Ay =ny/n3, =34, S=ny;+ny,
22= — v+ Vi — 4,

(v—1U/s)(1+5+4+7/2)

=(14+s5)(s+1/2) +0.52(s + 2 + 3s/(1 4+ 5)),
S=1+»1+2)/7,
203, =S+ S*+ 252/ (1 +2), FAyy=S8—Ts;.

(i) Second we obtain n,, as a function of s, n,,

(2.4)

N3 Ay = Hp 2 + Noy —~ Ropflay — Noafisy, Ay = Hysfiyy — 2.

2.5
(iii) Third, with the help of (2.4) and (2.5) we con-
struct all n,, parameters from (2.1): n3 =2zn,,

ns; = fiyNyy, § = 3,4, and the frequency p, and wave vector
V315 ¥32 from the n;; [see (A8)].

C. Shock limits *¥=n,, +n,, Y =3%+n,, (see Tables |
and Hl)

1. There exists an interesting property (already present?
for the 4v, model): all the Z; (we omit the upperscripts) in
the present class can be written in a factorized form

ngsZ; = Q;(8) (13 — no By ()3 — nop By (s)) - (2.6)

For these quadratic n,; polynomials, the coefficients of nZ,
are s dependent while the roots are of the type ny, (or ny,)
multiplied by s-dependent terms. Consequently we can easi-
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ly study the n,, intervals in which ny;Z; is positive. We want
to understand this factorization (2.6). We remark that from
the n,,,n;, expressions, all n; and consequently all X, are
linear combination of the n,; with s-dependent coeflicients,

4
2= A,()n, . (2.7a)
p=1

Recalling that ng, = ng,ng,/ny;, it turns out that the follow-
ing identity:

A A, = A4, (2.7b)
is also satisfied in our solutions. Then the structure (2.6)
holds for the 2;. This factorization holds for the 16 Z; and
we give four examples in subsection 3 of the Appendix [see
(A13)]. Here we report two other examples. We begin with
32 = ngy, + n,, = ny, + sn,, and substitute (2.3) for n,,,

(2.8a)

and note that the identity (2.7b) is trivial. We go on with
331 = 32! 4 n,, and substitute (2.5),

21 2 = = = -
A 35 = ng 8 + Rool3ly — MosflaS — Rgalyss,

33 =23+ (1012 + Nz — NosTzaZ — Noafinsz) /43,
(2.8b)
with 22! in (2.8a). The identity (2.7b) becomes
(Hi3gA 1z + 57 4A43) (ST 345 + R332A,)
= (%A, + A ) (30,4, + 24))
which is easily verified using the relation (A10) for s + z.
2. Other useful relations that simplify the calculations of
the X; are provided by invariance properties (yet present in
the 4v; model). For the exchange 1<»2 or 2«2, we must

perform both ny,<>n,, and n; <n;. For the intermediate
parameters this gives

(2.9)

As an application for 37, i = 1,2, we see, for the roots, that
B, =#n,,—B,=n,3/s and B,=1/n,,—B,=s/n,, With
(2.9) wefind 4, ~A4,/s%, A, —A,/2%, and for instance for the
root ny,B, of 23!
B, = (A, + A3)/ (N334, + 71,44;)
—B, = (54, + 224,) / (R324, + T, ,545) .

We can verify that the same transformations (2.9) applied to
B, give B,,,m=1,..,6.

(1e2) - (s> 1/5,0,,00,, /5,23 1/2,115;15,/5) .

TABLE L. 3% = ny,Z¥/0%, 5€(0.9,1), (7,; ~%,,/5) » (B, — B, ).

3. A third simplification (common to the 4v;, model)
comes from the fact that 3, for i=1,2 and i = 3,4 (k,J
fixed) have common roots. For instance, £' = 32! if
Moy + Ny — Ng3 — 3 =0 0r ngy — ngs +ny (1 —n;3) =0
or with (2.3) for n,,:

(noyy3 — no3) (3 (A4 — ) + noy(A13 — 1)) =0.

The first factor gives the common root #,,B,.

In conclusion, for the 16 2, instead of the 32 possible
roots,only ny, B, , k = 1,3,5,and ny,B,.., k' = 2,4,6, are real-
ly independent.

D. Signs and bounds for the intermediate parameters
a,,f,,z, when s belongs to [0.9,1]

In the sequel we limit s to the interval (0.9,1). In subsec-
tion 4 of the Appendix we study the square-roots representa-
tions (2.2) for #,7h,; and (2.4) for z,n,,. We find that
JHy3, — Ry, are positive and increase between their values
at s = 0.9 and s = 1. We prove Theorem 1 with the results:
n;3>0, n,<0, z<0, n;3>0, 7;,>0, 4,<0, 4,50,
fijq + 734> 0, i3 — H33> 0, and the numerical bounds.

1.33<R,,<14, —021<A,< —02,
0.52 <733 <0.63, 0.43 <7i3,<0.54 .

E. ny; intervals for positive =¥, s<[0.9,1] and n,, >0

In subsection 5 of the Appendix, for each of the 16 3,
written down like (2.6) in Tables I and II, from the signs of
Q,(5),B, (5),B, (s) we determine the n,; interval for which
3,>0. The intersections of these 16 intervals lead in
Theorem 3 to the positivity domain:

Sup(ng,/B,,ng,Bs) < ny; <inf(ng, B ,ne,By) . (2.10)

F. (no2,5<[0.9,1]) domain for 29> 0

Here, ng; is constructed from the (7,,,s) arbitrary pa-
rameters with the representation (2.3): 2n4,
= — u + V1 + 4ng, u being s and ny, dependent. Inequal-
ities of the type n4;S Xng,, ng; 219, X, with X and X s = de-
pendent positive functions can be expressed in the (s,74,)
variables. This is done in Lemma 12 of subsection 6 of the
Appendix, leading, respectively, to ny, S F(X), N, 2 G(X)
with F, G given by

=1 .3, or'-q,

.

.fz = (ng; — ”0|Ez)("03 - ”OZEI)

§4 = (ng; — ”o:Ez)(”oz ~ N\ By)

03 — N1 By) (g3 — npeBy)

Ml M

1= (n
3= (N3 — Ny By) (ng3 — ”022;1)

B, =7,5>0, E,:B,/S>0, B, =1/n,,<0, §2=SBz<0, A =m0 —5<0, Q= —n,/4,<0

0,=50,<0, Qy= —54,>0, Q,=7n,0,>0

j=2 ZIB.3, a2-q,
SJ = (ngs — ”01/32)(”03 - ”02/31)
b3

= (ng; — ”01/52) (no3 — Nop/By)

f2 = (ngy — no1/By) (ng3 — ngy/By)
f«s = (Mg3 — ng,/B,) (ny; — ”02/31)

Q= —735/4,>0, Q,=350,>0, Q= —5/4,>0, Q=n5%/(—4,)>0
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TABLE IL 2% = ng,( — 4,4,)Z¥/Q%, 5(0.9,1), (R, —~7,,/5, Ay, —~Fy,/2) — (B, —B,).

j=1 3-3, or-q,
i| = (g3 — 1oy B3) (ng3 — nppBy4) f2 = (R — "o|§4)("03 - "0233)

fs = (g3 ~ "mﬁa)(”os — ngyBy) -2_4 = (ng3 — 1o B3) (Ng3 — ”oziz)

2<0,7y,>0i=3,4,4; =Ty3fa —2>0, — 4,4;>0, Q) = Fzed; + N1 yA4; <0, @, = Ay 24, + 71,54, >0
Q= ~352/4>0, Q, = A5, + A3, <0, By = 0;/Q, = 2,/Q, <0, B, = (4, + 43)/Q, = (F34; + F334,) /03 >0

B, =9/0,=0,/0,>0 B, = (54, + 224,) /0, = (i 554; + 7i3324,)0,> 0

j=2 -3, ar-q,

2, = (ng; ~ no Bs) (ng3 — no;Be) f2 = (M3 — ”olis)(”os - ”ozﬁs)

Z, = (fos = 1o Bs) (g3 — neuBg) 4= (Mg3 — g Bs) (M3 ~ Nz Bs)

Q, = A\fiyy + $h34; >0, Q, =425, + A735>0, Q3= —352/4>0, O, =AF, + 4,7, >0
Bi=0,/0,=0,/0,50, B;=Q,/0,=0,/Q,50, B,= (4, +A4,)/Q, = (fiyd, + $7,4;)Q; <0
By= (A, + A;)/Qy = (hizpd, + A371,)/D,>0, Q= zA, + Ryl Ay = 4 Fissfisg + 54,

ﬁl3—ﬁ14+ (1 _S)X
{[(ﬁls—’_lm) +l"S],
X2 (A3 —Hy) —X(1—3) ‘

Ay —Hy—n~X(1—5)

FX) =
(2.11)

G(X) =

Then the positivity domain (2.9) can be written down in the
Ry, s plane (see Theorem 3’ in the Appendix) as
Sup(F(B,),G(Bs)) < ny, <inflG(B,),F(s/B,)) . (2.10")

It remains to determine the sup of the lower bounds and the
inf of the upper bounds. This is done in Lemma 14 and we
obtain the final positivity domain (see Theorem 4 in the Ap-
pendix) Z, > 0 if

F(B4) <Ny < G(Bl); 56[0911] y

G(B,) = afs — 1 j‘ 7'13(_’—113 - ﬁm)),
Sny3 — Mg
fy3 —Hys + By(1—5)
B (By(ny3— 1) +1—3) ’
and B, is written down in Table II. The corresponding
(s,n4,) domain is presented in Fig. 1.

nm == 1,

F(B4) =

. PHYSICAL DISCUSSION AND NUMERICAL
RESULTS

In addition to the N;, we introduce the total mass
M = 2IN,, and instead of the original x,,x, + x plane, we
consider the x,y plane defined in (1.4):

m.
Mxpt) =mo+ Fj’
~'D,

J

17 I I
0.9 0.95 1

FIG. 1. The (s,n,,) domain for positive =¥,
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m; =ny, + np + 2(”_;3 + nj4), j= 1,2,3,
my = Ngy + Ny + 2(ng3 + nos),s

For simplicity we assume d, =d, =d. In such a case
D, = D,( — y), M is even in y while this property does not
hold for N, and N,. We introduce Q = 1/D, + 1/D, and
rewrite M

Q1) =1/(1 4+ de®) + 1/(1 +de~?), d=dexp(pt),

M=my+ mQU,t) + my/(1 + dse*), d;=d,exp(pst) .
3.2)

For ¢ fixed, the equidensity lines x(y), corresponding to
M(x,p,t = const ) =const are easily constructed from
3.2),

= —logd, + log(my/(mg+mQ — M) — 1), (3.3)

x being real, the argument of the log must be positive.
We choose an example with the following values for the
arbitrary parameters:

s=097, ny= 1916, (3.42)

which satisfy Theorem 4. We deduce for the other param-
eters

n,, = — 0.998, — 0.968, — 1.375, 0.2084,

n;, = 0.0818, — 0.0288, 0.0457, 0.0436

i=1234 7,= —0.04, y,= —3, 75, =02,
5,=0.002, my=8.454, m, = — 4.298,

m, =0.2315, p=2.5, p,= —0.09. (3.4b)

With these values, one can verify that the =¥ are positive.
For the d; we choose

d=6, d,=0.5, (3.4¢)

M being symmetric with respect to the x axis, we restrict our
study to the half-plane y> 0.

(3.1)

m=m,=m.

n()] = 1,

A. Equidensity lines M(x,y,t=0)=const [Fig. 2(a)]

The asymptotic plateaus (x and y large) are
my+m=4.16 in the right half-plane x>0 and
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y (a)
my+M +My
my+m
4.39
Lg L6
Mix, y, t=0} = const
L E— 437
6
7.23
e —— Ld
-5 0 5
I
4374y ®
My+M +My
moom
4.39 N
4.16
110
- N
6 +5
15
M{x,y,1) = const
85 L | L X
-5 0 5 10

my + m + m, = 4.38 in the left x <0 one, m; being the dif-
ference between the two shock limits. Similarly, along any
line parallel to the x axis (y fixed), the difference between the
two shock limits is m, > 0. This shock structure is provided
by the third similarity component m,/D; with a downstream
domain at the right and an upstream one at the left. In this
upstream domain the shock limits, when x— — o0, are
mg + mQ(y,0) + m;(m, + m@(»,0) in the downstream do-
main when x— « ). If > 1 then Q < 1 and, due to m <0, the
asymptotic plateaus mg, + m + m; provided the highest
equidensity lines. If (like in the present numerical example)
d>1, then Q<1, the highest values mg+2m/
(1 4+ d) + m, are obtained along the x axis (y =0). Then
Q(,0) increases with y and the shock limits decrease when
|y] is increasing. Consequently, for the profiles parallel to the
y axis, we observe a bump in a strip parallel to the x axis.
Similarity shock waves behave like kinks. One can say that
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o3 1Y ©
Mg+M +My Mg+
439
~~ 416
N —
T30
6
8.454
8.5
M(x,y,t=10) = const 20 My
8.686
+10
Mg+ My
1 ! L X
-5 0 5 10

FIG. 2. (a) Equidensity lines at ¢ = O for the total mass M that is evenin the
y variable. (b),(c) Equidensity lines at # = 1 and 10 for the total mass.

these two-spatial-dimensional solutions are the superposi-
tion of a kink in the x variable (shock structure) and both a
kink and an antikink in the y variable (bump) (as we shall
see later for the M profiles at fixed y and at fixed x).

B. Movement with f of the equidensity lines M=const
[Figs. 2(b)-{c)]

We first discuss the movement of the bump. When ¢
increases, p being positive, d increases while |m|/(1 + d)
decreases. Due to m <0, the two shock limits (x —» 4+ o),
around the x axis, increase. The height of the bump around
the x axis increases up to the Maxwellian value m, + m;, for
x <0 and m, for x > 0. On the contrary, for profiles parallel
to the x axis but with |y| very large, the asymptotic lower
plateaus m, + m + m; and m, + m, must reappear. Sum-
marizing, the bump spreads out in a large strip parallel to the
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x axis, pushing the asymptotic plateaus to higher and higher
|¥| values.

Second, we discuss the x-dependent shock due to the
third similarity component, p, being negative, d, varies
slowly from its initial 1/2 value up to 1 for infinite time. The
shock structure does not change very much, keeping the
shift m, for the asymptotic values. It is useful to look at a
large t = 10 fixed value, while (x,y) are increasing. For not
too large y values (|y|<20), M=~my+ m;/(1+¢€*), the
equidensity lines are parallel to the y axis and the two asymp-
totic limits are either the Maxwellian m, + m; or the other
shock limit m, On the contrary, for larger y values
(|y] > 20), the initial time structures reappear, with equiden-
sity lines parallel to the x axis and we observe the two asymp-
totic plateaus m, + m + m,,m, + m.

C. Densities N, and total mass M at fixed y and fixed x

In Fig. 3(a) for &, and Fig. 3(c) for M we present pro-
files parallel to the x axis at y = 10 fixed. They correspond to
the third similarity shock wave structure with a shift of these
structures when the time is growing. On the contrary, in Fig.
3(b), for N, profiles parallel to the y axis with x = — 10

® - N;(x=-10,y ; t=0, 3, 10)
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fixed we observe the two shock limits and in Fig. 3(¢) for M
the spreading of the bump when the time increases.

APPENDIX: CONSTRUCTION OF POSITIVE SHOCK
WAVES SOLUTIONS FOR THE BROADWELL MODEL

For the N, (x;,x, 4+ x3,¢) solutions with
N¢ = N4Ns = N3, dueto Col; + 2Col; =0and N, =N, ,
simplifications occur for the Broadwell model:
(¥, + le, )/2= (N, — N2x|)/2

= - NB( - N3x2

= —N, +N4x2 = NN, — N\N,. (A1)

We build up first the sums of the two first components
no; + 2n;/D;,j = 1,2 and add the third one n,/D;. We sub-
stitute the ansatz (1.4) into (Al).

1. Relations and construction for the two first
components

We find the relations
nap+v)/2=nplp—v)/2= —ns(p+7,)

=nu(y2—pY =R, — N0,

© Mix=-10,y, t=0,3,10)

FIG. 3. Densities N; and total mass M at fixed y =10 and at fixed
x= —10.

Henri Cornille 794



= Hg Mz + Hoaltyy — Ao3Miy — Roallys s (A2a)
_ 2 2 .2 2
Rosfos = Hoillgys M1 + Mg = H13 + MYy,
(ny; — ny) (g, — Rgy) = (Mg — ny3) (ngy — gy) . (A2b)

We have 11 parameters n,,,n,,,0,¥;, eight relations leaving
one scaling fixed parameter and two arbitrary ones chosen to
be:

(ng,=1, s=ny/n,ng) .

We construct in successive stages all parameters from s and
ng,: (i) First, p, ¥; can be deduced from the n,; alone,

pryny = (nan — ngng) (ny +n3),
il + nyo) =p(ng, —nyy),
V2(nys + 1) =p(ng—ny3)

from which we deduce a second relation between the

My Ryt (Ryy 4 ny) + 2n304(nyg + nyp) = 0. (i) Sec-
ond, we define intermediate parameters

i =34,

which, due to the two n,, relations, are s-dependent func-
tions:

Fs+2(1+5)P =0, L2+ Ls/(1+5)=1+5,
2145 = —s++86,
S=s+4(1+5)(1+5)7,

2= +J1+5 +7s/(1+3),

’_’14=f_’_’13-

(A3)

Ay =n,/n, P =ty S =H3+0,

(A4)

(iii) Third, we see from (A2b) that ny, is known from n,;
i#4 and for ny; we get

by + phgy — gy =0,
2ng; = —p +Vu° + 4ngy,
m= 1 ~noz)(l —8)/ (B —H3) .

(iv) Fourth, we have two equivalent relations for n,, (we
define 4, = # —35),

NoiS + Hop — HoaMis — Roslys

(A5)

(A6)

parameters:

=An = gy + NS — Rgzf 3 — Noglyg,

from which we can reconstruct all

Ry = 81,01 = NP5

2. Relations and constructions with the third
component included

We find seven relations and seven parameters r,,,05,%;
that must be constructed with (s,n4,):

13, (03 + ¥31)/2 = n3(p3 — ¥31)/2 = — ny3(p3 + ¥32)
= N34(V32 — P3) = Ha3Mzq — N3 M3
= Rgilizy + RoaMtyy — HosMaa — Noallsz s

N3 Mg+ Byl = Aaglz + B3Py,

Ry —+ Raplyy = Raglly + A33hys -

(i) Still ps,y5; are known from the n;;:

(A7)
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Psttainsy = (Myy + n3;) (M33034 — N3iMas),
Y31 (N3 + ny) = ps3(ns; — nyy) ,
Va2(M34 + N33) = p3(n34 — n33)
from which we obtain in (A7) a third »n;; relation

(A8)

Ry 3 (R3y + Nay) + 2n33034(n3; + n3,) = 0.

(ii) We define intermediate parameters that are s-de-
pendent functions:

z=n3/ny, Ry = N3/ny),

i=34, P=Tyls,, S=DH3+Hy, (A9)
and satisfy the relations:
S+ Z=THyfly3+ Aasflyy, |+ 28 =Hasliyy + Ayfig
z2S4+2(1+2)P=0, PP =sz/4,
S =U+D(1+53), Z2+14+vz=0,
2= —v+¥—4,
U(H 3 — 5H ) (T3 — Tyy)

= (14 5)(7y3 — 14)2 /2 + (A3 — shy,)°

+ (g — 5735)%, (A10)

2y =S+ ST —4P, fyy=S8—Ts;-

(iii) We get n;, and define 4, = P —z,

Ny A3 = NoyZ + Moy — No3Mizq — Mogllss (Al11)
Finally all  parameters are deduced from

(S;npp) 1= 3y = 2Ry, Ry = iy l30,03,Y ;-

3. Construction of the 16 shock limits
i=ny+ ”11;2"/31= A 4ny

From (A6)-(A10) we see that the n; and X, are linear
combination of the n,, with s-dependent factors. Eliminat-
ing ng, = ng ngy/Ng; then ny;, 3, become quadratic ny; poly-
nomials. It is remarkable that all roots are of the type g, or
ny, multiplied by s-dependent functions. This comes from an
identity satisfied by the coeflicients of ny; at the linear £,

level:
4

if did,=d;d;—ng2,
=d,(ng; + ned,/dy) (ng; + npd,/ds) . (A12)
For each (p, j) family of =, we explicit one case with / = 1:
3 =ng +ny,
=( — 7l 14Ng3 — Noally3 + Ngy + Ho M 3114 ) /A,
32 = ny, + Ny =Ny, + 1y,
= (1g, P + NppS® — No3ST 3 — HoaSH4) /Ay,
2 = ngy + nyy + 1y
= — ny3(H3y/As + 1 4/A)) — ngs(fis3/A5 + H13/A))
+ 1o (P74, + 2/4;5) + npa(1/4, + 1/45) ,
2P =3V +ny,
= — Rg3(S7,3/ A, + N34/ A3) — ng, (s 4/A, + H33/A3)
+ 1o\ (P /A, + 2/43) + noy (/4 + 1/45) . (A13)
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For 2% the identity d,d, = d,d, is trivial, for =¥ we must use
the relations s + z and 1 + sz written down in (A10). The
same tools occur for the other i = 2,3,4 values of 3%, The
explicit expressions are written down in Tables I and II,

ny2; = () gz — By (8)ng,) (g — By (8)ny,) .

4. Bounds for the intermediate parameters 7,,,/,,,z
when s belongs to (0.9,1)

From (A4)~(A10) we obtain bounds for the s-depen-
dent functions when s€(0.9,1).
Lemmal:1< % <1 + sand sisincreasing. From (A4)

the inequalities are equivalent to 2+43s5<yé
<2(14+5%+s or s24+s5—1>0, 5s>0. We deduce
& <1+ 5<2s(1 + 5).” From the quadratic . equation we
find the derivative:
=(25s—F/(+5)Y)25 +5/(1+3))>0,

£(0.9) = 112<.F<S(1) = 1.186.

Lemma 2: ;>0 and — n,,> 0 are increasing s func-
tions. From (A4)—(Al14) we get Z <0, 1y3>0,—7,,>0
and for the n; derivative

2A;), =5, + 25+, /(1 +5)
+ /(1 +53))/(41,, —2.)>0.
The - n,, derivative is more complicated. From — 1/

fa=(145)/s+ ((1 +5)/sW1 + 25/F (1 +5) it is suffi-
cient that the second term be decreasing. The derivative of
this term has a sign given by

SN+ =214+ (1 452 — (s+ 1)5%6,/2/6

with &§ given in (A4). The last term is negative, the sum of
the two first terms being also negative it follows that — 71,4 is
increasing,

1,5(0.9) = 1.3303<n,,<H,5(1) = 1.398,

f4(1) = —0.2121<7,,<7,4,(0.9) = —0.201 . (A15)
Lemma 4: — zis adecreasing v function and if v, < v < vy,
then — z(vy,,) < — z(v) < — z(v;¢ ). From (A4) we get
v>0,z<0,and ( — z), = z/\¥ — 4 <0. For Ugyp WeE Write:

(Al4)

v=1/s+((1+8)(s+1/2)
+ Ll +24+3s/(1+ )2/ (1 +s+ 5/2)

deduced from (A10). We get an upper bound equal to
3.4117 by substituting s = 1, .~ = (1) in the numerator
and s =0.9, .#(0.9) in the denominator. We find a lower

bound equal to v(1) = (7 4 +33)/4 because the sign of
v(s) — v(1) is given by
(ry; — 7’14)2(\/’5 “}’\/ﬁ)
+2(1 —5) L33 —s(3 +33)/4)>0,
0.323 = —z(v=3.4117)
< —z< —2z(s=1)=0.353. (A16)

Lemma 5: 7 = #/(1 + s) is a decreasing s function.
We find for the derivative:

Fo=—(1=5Q+F)/(1+52F (1 +5) +35)<0.
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So 7(1)@? <S(0.9),and (A10):2P= — 2/ % applying
lower and upper bounds (A14)-(A16)

0.2726 <« Z <P(1) = 0.2976. (A17)
Lemma 6: n;, <nyy and 75,(1) = n53(1). From the

(A9) s+4+2z 145z relations we find: 75y — Ay,
=1—-85(1—-2)/(A,;—7,4)>0. It follows
A3, <P(1),73, >0.2726,
Fiya<Mza(s = 1) = 0.54545, 7i;,>0.52092,
Hiy; — 73y <0.0884, 7,3;<0.6338, 7,,>04325.
(A18)

For the third inequality we use (1 —5)(1 —2) <0.135 and
for two last ones the two first resuits.

Theorem 1: For 5s€(0.9,1) the intermediate parameters
satisfy: #,3,>0,i,, <0, 2<0,;3>0, #,,>0, >0, Z <0,
§>0, P>0, #1,,+ 73,50, ;3 — 73350, 4, =2 —5<0,
A; = P — z> 0 and the numerical bounds (A15)-(A18).

5. Positivity n1y; intervals for =¥ with s(0.9,1) and n,, >0
(see Tables | and Il)

The s-dependent roots B, B, are built- -up with
n;,4,,43,5.z (see Theorem 1 for the signs). For &, j fixed we

first study the n,, intervals with =, > 0 and second their in-
tersections for k, j varying.

Lemma 8: If 0 < ny, < inf(ny,B,,n,,B,) then 32'>0, if
Rys > sup(ny,/B,,ny,/B,) then 222> 0. We find that B,,B,
are positive, B, B, negative, while Q?' are negative for
i = 1,2 positive for i = 3,4 and for Q?* they are all positive.

Lemma 9: All 3 are positive if
0 < ngs <inf(ny,B4,n,,B,). From signs considerations we
find _successively: €); <0,823> 0,7i354; + 3324, >0- B,
<0,B, <04, + Ay = (A3 — H33) (A4 — H3q) <0-Q,<0
(due to |7;/f4|>1) and B4>O-»B3>0 and Qz>0
Further B,<B, due to B,— By =A A, (7, — i)/
Q,Q;, < 0. The signs of {}; and the locations of the roots give
the intersections of the n; positive intervals.

Lemma 10: All X7 are positive if
Ngs > sup(ng, 5,n02B ). From sign considerations we find:
0,>0,, and B are positive; y°4, + A4, <A, + A4, <0,
ny3d, + s 445 < 0— By < 0,8}, and ), are positive— Bs > 0;
A, + Ay = (yy —2h3) (H3y —204) >0 (due to
flsg + 114>0,|2| < 1)—»B6>0 Further B, <Bs, due to
B,—B;=A4,4 32l 5 — i30)2 /0,0, <0. The signs of Q;
and the locations of the roots give the ng; interval for whlcl
positivity is satisfied.

Theorem 2: For all k, j,i values the =¥ are positive if

SUP(”ol/Bn”(nBs;noz/E1:"0255)

<oy <inf(ng,B,,n0,B4,10,B,,10,B,) - (A19)

Lemma 11: B, <B,, Bs<1/B,, B,<B,, 1/B, < Bs. We
write down identities for which the sign of each factor is
known:

B, — B, = A li;,( —z + 1 3h34) /03 <0,
By — s/B, = A, (fiy3fi 3 — 52) 34/ Q3 <0,
- EI = Af33 (N4 — ’—‘34)/0'?l <0,
1/B, — By = A,(A:7i,3 + fay — 21,3/ Q32 <0
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Theorem 3: =¥ > 0 for all k, j,i values if

sup(noz/ﬁ,,nO,Bs) < Ry <inf(ng, B,ng,B,) . (A20)

6. Positivity ng, intervals for = with s<(0.9,1) and 7y =1

Lemma 12: (i) if ng2ny,X with X>0 then
neSF(X) = (C+ DX)/X(XC+ D) where we define
C="7,3—74>0and D=1—15>0; (ii) if no3 2 Xn,, with
X>0, C—XD>0, n,=1 then n,2G(X)

= (X2C—XD)/(C—XD); (ii)H(X,X) = C(1 — XX)
+ D(X — X) 20 then F(X) 2G(X). For the proofs we use
the representation (A5): 2ng; = — i + Vi + 4ng,. In (i)
weget 12n,,X 2 + Xuand ny, 2X 2 + Xuin (ii) while (iii) is
trivial.

Lemma 13: (i) C — DB, >0; (ii) C — DB5>0 and we
can apply Lemma 12 to X = B, and B.. For (i) we notice
that C — DB, = sn,; — 1,,>0. For (ii) we remark that if
B, < Sup Bsandif C> D Sup By it follows that C > DB;. First
we seek an upper bound for B; = Q,/€Q, (written down in
Table II). From Q,>0 we get the inequality — 71,4,/
sf,3A45 < 1, using this result we find Q, <437 3(1 — 5z) and
Oy>A0,5(R; —sh,) and Bs< (1 —sz)/(n; — shs,)

= Sup B;. Second C> D Sup B; is equivalent to

(A3 —N,) (A3 —SH3,) > (s —1)(1 —s2),
which is satisfied for the numerical bound values of subsec-
tion 4 of the Appendix. We apply Lemma 12 to Theorem 3:
Theorem 3': $¥ are positive if
sup(F(B,),G(B;s)) < ny, <inflG(B,),F(s/B,)). (A20)

Lemma 14: (i) H(s/B,B,) >0 and F(s/B,) > G(B,),
(ii) H(B,,Bs) >0 and F(B,) > G(B5). For (i) with the de-
finition of Lemma 12 we find: H=C(l —ys)
+D(— B, +s/B,) = (1 —s)(s/B, — fi,,) >0. For (ii)

797 J. Math. Phys., Vol. 30, No. 4, April 1989

we have H = C(1 — B,B;) + D(B, — B;) or
H(B,,Bs) = ((1 —5)A,A4,/0.75523?)
X (8§ — Ay30i34) (1 — A3053) > 0.

The first factor is positive, the two others (using the numeri-
cal bounds of subsection 4) are also positive. Applying
Lemma 14 to Theorem 3’ we find the last result:

Theorem 4: 2% 0 for all k,j,i values if s€(0.9,1),
no, = 1 and for n,,:

F(B,) <no, < G(By),
G(B,) =Tf3(s — 1+ 1y3(Ay3 — 714))/ (3 — 1) s
F(B,) = (A3 — fiyg + By(1 —5))
X [By(By(Fiys —Airg) + 1 —5)171,
which defines the (s,n,,) positivity domain of Fig. 1.

(A21)
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Billiard systems constrained to move on a quadric surface with confocal quadric boundaries
were studied. The trajectory of a billiard is described as a collection of geodesic segments
joining on the boundary. At the joining points, the trajectory obeys the law of reflection. It was
found that the geodesic segments are all tangent to a common confocal quadric curve (a
caustic) on this quadric surface. If a trajectory is closed, then all trajectories sharing the same
caustic quadric are all closed and have the same period and length. Thus a generalization of
Poncelet’s theorem on a quadric surface is achieved. The elliptical billiard systems on spheres
and pseudospheres were studied and results were obtained that are similar to those on a plane.

The results can be extended to #» dimensions.

I. INTRODUCTION

A billiard system describes the motion of a particle that
travels as a free particle inside a closed region and reflects
elastically at the boundary.' Billiard systems provide impor-
tant insights in mathematics and physics and have been stud-
ied extensively.

For a two-dimensional billiard system with an ellipse as
its boundary, the straight segments of a trajectory are always
tangent to a caustic curve.>* This caustic curve is a quadric
confocal to the original ellipse. In addition, if a trajectory is
closed after p bounces, then all trajectories sharing the same
caustic quadric are also closed after p bounces. This fact is a
special case of the Poncelet theorem in projective geometry.*

Chang and Friedberg gave one of the possible extensions
of the Poncelet theorem to three and higher dimensions.>¢
They studied billiard systems with elliptical boundaries and
discovered that the trajectory of a particle inside a three-
dimensional ellipsoid gives rise to two caustic quadric sur-
faces that are confocal to the original ellipsoid. Chang and
Friedberg also established that if any trajectory in a three-
dimensional ellipsoid is closed after p bounces, then all the
trajectories that share the same caustic quadric surfaces are
also closed after p bounces independent of the starting point.

In this paper, we study a billiard system where the parti-
cle is constrained to move on the surface of a quadric (ellip-
soid or pseudoellipsoid, etc.) and is reflected elastically on
boundaries defined by confocal quadrics on the surfaces. By
taking appropriate limits, we extend the validity of our re-
sults to billiard systems on a sphere or pseudosphere. We can
generalize our results to billiard systems constrained to
move on an m-dimensional quadric surface in an #-dimen-
sional space.

In Sec. II, we begin with a brief review of Hamilton-
Jacobi equations in a three-dimensional elliptical coordi-
nates system. We then introduce a billiard system with boun-
daries composed of several confocal quadrics. We prove re-
sults similar to those obtained in Ref. 5. In the limit when
one of the caustics is identical to the boundary ellipsoid, we
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obtain a billiard system constrained to move on this ellip-
soid. In Sec. III, we give an alternative proof based on a
direct separation of variables for this constrained system. In
Sec. IV, we study billiard systems on a sphere as the proper
limit of an ellipsoid. In Secs. V and VI, we extend our results
to billiard systems on a pseudosphere. We describe the pro-
jective definition of confocal quadrics in an Appendix.

Ii. BILLIARD SYSTEMS WITH QUADRICAL
BOUNDARIES

Chang and Friedberg studied billiard systems with an
ellipse as the boundary.’ In this section, we shall extend our
study to regions bounded on all sides by confocal quadrics.

In a three-dimensional space, we can express a family of
confocal quadrics as

x? ¥ z
A—-A + B—1 + CcC—-A
where we choose 4 > B> C> 0. Depending on the value of 4
relative to A, B, and C, we have different species of quadrics,
as described in Ref. 5.

At any given point in space, there are three mutually
orthogonal confocal quadric surfaces passing through it.
The A ’s associated with these surfaces are Jacobi variables.”
For real x, y, and z, the A ’s fall into the ranges

o <A <C<A,<B<Ad;<A. (2.2)

In the following, we follow the notation and method of Ref.
5.

1, (2.1)

The Cartesian and Jacobian coordinates are related by
2= (A—A)(A4—21,)(A4—1,)

, (2.3a)
(A—-B)(4-C)

= B=A)B-A) (B4 (2.3b)
(B-—A)(B—-C)

2 (C=A)(C—A)(C—4y) (2.3¢)
(C—A4)(C—B)

The first fundamental form expressed in terms of the ellipti-
cal coordinates is
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ds=g,dA} +g,dA} +gdA3, (24)
where
g = Ga=A (A —A) (2.52)
4(4—AD)B—-A)(C—4))
g= M= A=Ay (2.5b)
4(4 — A,)(B—2,)(C—4y)
o (A —A3) (A — 43) (2.5¢)

T AA—A)(B—A)(C—4s)
In the elliptical coordinates, the Lagrangian and Hamilto-
nian for a particle of unit mass are

L=3(gA} + 84} +8A}) — V(A dpdy)  (26)
and
2 2 2
H= g(p—‘ +2 +‘ﬁ) + V(A Az As)
8 & &
-2 (4 _Al)(B_il)(C'—Al)p%
(A2 —AD (43— 4y)
+ cyclic permutation of subscripts]
+ V(A1 A24,), (2.7)
respectively, with
= glil’ D= 82/12, Pz = 83"13- (2.8)

We can generalize the result of Ref. 5 by considering the
motion of a free particle inside a region specified by a more
general boundary condition

A <A <A, A<A, <A}, Aj<A;<Aj. (2.9)

The particle bounces off the surfaces according to the law of
reflections. We can achieve this in the framework of a Ham-
iltonian system by choosing the potential energy V(4,, 4,,
Ay) as

V(A-p /12, /13) - Vl(ﬂ'l)/[(ﬂ'Z _/11)(/‘[3 _/11)]
+ V(A /[ (A, — A (A — Ay) ]

+ V3(13)/[(11 _/13)(12 '—/{3)],
(2.10)
where
Vi(A;)) =0for A, + e<A< A} —¢€

=(—1)""Wo/e, Vo>0for A;> A, or Al <A,
(2.11)

and ¥V, (4;) have continuous first derivatives in the regions
Ai<Ad;<A;+€ Al —e<d <Al

As €0, we recover the law of reflections on the boundaries.
We can also impose these types of boundary conditions on
only one or two of the 4 ’s. The modification of (2.9)—(2.11)
is straightforward.

With these boundary conditions, the Hamilton—Jacobi-
an equation of the system,

2(4 —A,)(B—/ll)(C—Al)(QZ)z
A —A)(A,—A4)  \dA,
+ cyclic permutations of A’s + V(4,, 4,, 43)

= @, the energy, (2.12)

799 J. Math. Phys., Vol. 30, No. 4, April 1989

is still separable. As described in Ref. 5, we can solve the
Hamilton—Jacobian equation by choosing

W=W,(A,) + Wy(4,) + Wy(4;) (2.13)

and by introducing the separation constants o', @” through

24 —1,)(B —/11)(0—11)(1""‘—’1'))2

da,
+Vidy=al,—-a)(A, —a"), (2.14a)
2(4 —/12)(3—42)(0—/12)(%)2
di,
+ Vy(dy) = a(dy — ') (A, — a”), (2.14b)
2(4 _,13)(3_,13)@_,13)(%43_))’
dA,
+ Vi(d) =a(d; —a')(4; —a”). (2.14c)
By the use of the identity
AL—-a)Y4—a") L —a)d,—a")
(A=A —43) (A=A (4, —A43)
U= —a) (2.15)

(As—AD(As—4,)

we can show that the Hamilton—Jacobi equation (2.12) is
indeed separated and satisfied. In Eqs. (2.12) and (2.14), «,
a’,and a” are three independent constants of motion and are
single-valued functions of coordinates and momenta. Since
W in the Hamilton-Jacobi equation can be used as a gener-
ating function for a canonical transformation by which a, o,
and a" become new canonical momenta, the Poisson brack-
etsofa, a’,and a” areidentically zero. Thus this system is an
integrable system. On the other hand, this system is also a
bounded system. We can apply Arnold’s theorem for a
bounded integrable system® to our billiard system and obtain
the following. The motion of the particle is equivalent to a
quasiperiodic motion on a torus specified by a’, @”, and a.
The frequencies are also determined by ', @, and a. If one
orbit is closed, then all orbits for the same parameters o', a”,
and a are also closed and have the same period. Since the

speed of the particle is the same for these orbits (v = 2a),
we conclude that these closed trajectories have the same to-
tal length. Indeed, following the method described in Ref. 5,
we can verify explicitly the above results in our billiard sys-
tem.

In Egs. (2.14), a is the energy. We now turn to the
geometric meanings of @’ @”. By the use of (2.14) and

s , . aw.
S
i g\ di,

we can prove that the straight segments are tangent to the
quadrics A = @’ and A = a”, respectively. As we trace a par-
ticle with v = y2a along a straight-line segment and its ex-
tension from -« to oo, the A ’s change continuously and re-
turn to their original values. Equations (2.14) are all
satisfied if we set ¥ = O in these equations. Setting ¥ =0 in
(2.16), we have

(2.16)
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L=L@Zg‘
gi\di,

=\/a(/1, —a)Y4—a")A—2)B—4,)(C—4,)

(A2 — A1) (s — A1)

(2.17)
and similar equations for A, and A,. If the nominator is not
zero, A ; is a continuous function of A. In addition, if A ; 70, it
must retain the same sign to guarantee the continuity of the
motion. Therefore, A, can reach a turning point only at a’
a”, A, B, or C. On the other hand, for A, to be real, A; must
change sign at these points. Thus A; must reach o’ and then
bounce back. This implies that the straight line is tangent to
A; = a'. From the meanings of &, @', and a”, we see that they
are really single-valued functions of coordinates and mo-
menta.

In conclusion, we can summarize the motion of a bil-
liard system subject to the boundary condition (2.9) by the
following theorems.

Theorem 1: Different line segments of a trajectory are
tangent to the same confocal quadrics A = a’ and A = ”.

Theorem 2 (generalized Poncelet theorem): If one of the
trajectories is closed after p bounces, then all trajectories
sharing the same caustics @' and a” are closed after p
bounces and have the same total path length.

lil. BILLIARD SYSTEMS CONSTRAINED ON AN
ELLIPSOID

We consider a billiard system moving on a quadric sur-
face S. For the simplicity of presentation, we choose the sur-
face to be an ellipsoid in three dimensions specified by the
elliptical coordinates A, = a’. This system can be viewed as
the limits of a particle moving between two confocal surfaces
A, = A'and A, = @', with the trajectory tangent to the inner
surface and bouncing elastically at the outer surface. In oth-
er words, the inner surface is chosen to be one of the caustics
of the billiard system. At the limit A’ = o', the two surfaces
become one and the trajectory follows the geodesics on the
surface. The other confocal surfaces A, =const and
A5 = const intersect the surface S at two families of mutually
orthogonal curves. These define the confocal curves on the
surface S. Using similar definitions, we can introduce confo-
cal quadrics on an m-dimensional quadric surface in an n-
dimensional space.

We can apply Theorems 1 and 2 obtained in Sec. II to
the present system. The billiard is moving on .S along geode-
sics inside a region defined by A,<A,<A; and
A, <A; < AL, At the boundary curves, the billiard bounces
according to the law of reflection. The original system pos-
sesses two caustics, of which one is the surface S itself. The
intersect of the other caustic and the surface S gives a caustic
curve A = a” on S. The different geodesic segment of the
trajectory is tangent to this same caustic curve a”. We now
have a generalized Poncelet theorem on S. Consider a bil-
liard system on S with the boundary conditions described
above. If one of the trajectories is closed after p bounces, then
all trajectories sharing the same caustic are closed after p
bounces. These closed polygons all have the same path
length. (See Fig. 1.)

800 J. Math. Phys., Vol. 30, No. 4, April 1989

FIG. 1. Poncelet’s theorem on an ellipsoid (S). The ellipsoid is parame-
trized by two families of confocal quadrics. The periodic orbits (polygons)
are constructed by geodesic segments. The quadric b is the boundary of the
billiard system and the quadric ¢ is the caustic for these periodic trajectories.

Note that the result is still valid if we remove one or
more of the boundary curves. Indeed, Arnold has studied the
motion of a free particle constrained on such a surface with-
out additional boundary curves and demonstrated the exis-
tence of caustic curves.®

We can also prove Theorems 1 and 2 for a billiard sys-
tem on surface S directly by solving Hamilton-Jacobi equa-
tion. The advantage of this new derivation is that it can be
extended to billiard systems on a pseudoquadric surface. The
constraint A, = &’ is now built into the Hamiltonian:

1 p2 2
2\g g
(A4—2)(B—A)(C— /{2)P§
Ay — Ay (@' —A4,)
(A—%NB—%HC—hWﬂ
(@ —A3) (A, — A43)

+ V(A4;) .

=2

3.1)

The Hamilton—Jacobi equation is
2(4-)(B=1,)(C—=4,) (5’_W)2
(' —A)(4;—4y) oA,
24-43)(B—43)(C—A4,) (3_W>
(@' —A3) (A, — A3) oA,
+ V(4,,4;) = a, the energy,

(3.2)

where V(4,.45) is chosen as
V,(4,)

(&' —2,) (A5 — Ay)

V3(45)
(@' —A) (A, — A3)
(3.3)
with V; (4;) the same as that in (2.11). We can solve (3.2)
by introducing a separable W:

V(/12,ﬂ3) ==

W= Wy(1,) + W3(43), (3.4)
with the separation constants a’=A4,, and a” via
2(4 —A4,)(B—A4,)(C— A4,) + Vy(4y)

=a(d,—a)Y(4,—a”), (3.5a)
2(A — A3) (B — A3)(C — 43) + V3(45)

=a(d;—a')(4; —a”). (3.5b)

Note that (3.5a) and (3.5b) are identical to (2.14b) and
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(2.14¢). Since this system obeys the same set of equations
and boundary conditions in 4, and A, variables as those in
Sec. I, Theorems 1 and 2 established in Sec. II are also valid
for the billiard system on surface S (1 = a’).

It is straightforward to see that we can gereralize our
results to n-dimensional space subjected to m constraints;

(3.6)

The billiard is now moving on (n-m) dimensional quadric
hypersurface in an n-dimensional space.

A=a®i=1,2,.,m.

V. BILLIARD SYSTEM ON A SPHERE

In this section, we shall look at the billiard system on
surfaces with additional symmetry. The cylindrical symmet-
ricalcases4 = B # CorA # B = Carenot particularly inter-
esting. The confocal quadric curves on these surfaces are
circles and ellipses which are expected from the cylindrical
symmetry. However, the spherical symmetrical cases
A = B = C are more interesting. We need to take the limit
C— B— A more carefully.

We begin with an ellipsoid

2

X, r.z_y

A B C
where we assume, as before, 4 > B> C. A quadric confocal
to (4.1) is

2 2 2
r +2 =

A—-A B—4 C-A
Only those quadrics with 4 >4 > C can intersect with the
original ellipsoid (4.1) in real space. Thus as B and C ap-
proach A4, A should also approach 4. We shall consider the
limit of B, C, and A approaching A4, with the fixed ratios

O<b<«l.

(4.1)

1. (4.2)

(B—C)/(4—C)=b, (4.3)

Equations (4.3) imply

A—A=UA-C)(1—-§),
B—A=UA-C)(b-¥&),
c—A=—-£MA4-0).

(4.4)

At the limit 4 — C, we have
x2 y2 . i _ 0
1—-§ b6-§ ¢
The intersection of (4.5) and the sphere S,

(4.5)

X+y+27=A, (4.6)
gives rise to the confocal quadrics on S. We have shown some
of the typical confocal quadrics in Fig. 2. We can extend the
results of Sec. II to regions bounded by these confocal qua-
dric curves on S.

If we consider a region on S near x = 4, y =z =0 and
if we choose small b and £, we then recover the original two-
dimensional billiard results. In other words, we may also
consider the results described in Sec. IT as special cases of the
results described in this section.
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FIG. 2. Confocal quadrics on a sphere (S). We have obtained these confocal
quadrics by treating the sphere as a proper limit of an ellipsoid. The param-
eter b used [see Eq. (4.5)] is b= 0.25.

V. PSEUDOELLIPSOIDS AND PSEUDOSPHERES

In this section, we shall generalize our results to the
billiard systems defined on a pseudoellipsoidal surface. By
taking the proper limit, we can extend our results to those
defined on a pseudosphere. We shall restrict our discussions
to three dimensions. Most of the results can be extended
straightforwardly to n dimensions.

We shall first introduce elliptical coordinates on a pseu-
doellipsoid. We begin with a family of confocal quadrics, as
described in Sec. I by Eq. (2.1):

x? » 2

1A B atc i

where we choose, as before, 4 > B> C>0. For A <4, (5.1)
describes a real confocal quadric and for 4 >4, (5.1) de-
scribes a pseudoellipsoid: The latter cannot be realized as
real solutions to (5.1). However, as intrinsic surfaces, pseu-
doellipsoids and pseudospheres are well defined.

In Sec. 11, we introduced the elliptical coordinates 4,,
A,, and A,. These coordinates are related to the Cartesian
coordinates by (2.3). The first fundamental form is given in
(2.4) and (2.5). To describe a pseudoellipsoid, we choose
the ranges of the elliptical coordinates as

—w<d;<C<cAy<B<A<A,. (5.2)
Under restriction (5.2), we can show from (2.5) that g, >0,
g,>0, and g, <0. If we keep 4; = a'( > 4), a constant, we

obtain a pseudoellipsoidal surface S whose first fundamental
form is

1 (5.1)

ds’ =g, dA} +g,dA}, (5.3)
where
A —AN(@ —A))
&1 = >0, (5.4a)
T 4A-A)B—A)(C—A)
2 Ai—d)@—4) (5.4b)

4(A4 —A) (B~ A)(C—4y)
The negative g, does not enter in (5.4) and consequently, the
intrinsic surface S'is well defined in A, A, space, as promised.
The families of curves A; = const and A, = const are the
confocal quadrics on S. Note that even though the pseudoel-
lipsoid is well defined in 4,4, space, not all the Cartesian
coordinates given by (2.3) are real. One can check easily
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that the coordinate x is purely imaginary (x> <0) and the
coordinates y, z are real (*>0,z>>0). This confirms the
well-known fact that a pseudosphere cannot be embedded
globally in a three-dimensional Euclidean space, but can be
embedded in a Minkowskian space (see, e.g., Ref. 9).

The Hamiltonian for a billiard system constrained to
move on the pseudoellipsoid .S is

1 2 2
H= —(’i +2 V(/ll,/iz))
2\g; &

-2 (4 —11)(3—/11)(6'—/11)19%
(A, — A (@' =)

" (A=) (B=4,)(C—=4,) §]
A, — AN (a —4,)
+ V(d,.42), (5.5)
where V (4,, A,) is chosen as
Vi(4) V5(4,)
Vidida) = =A@ =) | (A=A (e — Ay
(5.6)

with V;(A4;) the same as in (2.11). Following the same
method described in Secs. II and II1, we can show easily that
the Hamilton—Jacobi equation for the system (5.5) is sep-
arable. We can therefore extend the results in Secs. II and I11
to the billiard system on a pseudoellipsoid.

To describe the motion on a pseudosphere, we take the
limit B, C— 4. Following the method in Sec. IV, we let B, C,
A, and A, approach A simultaneously by keeping the follow-
ing ratios fixed:

(ALi=C)/(A—-C)=¢, i=12, (5.7)

(B—C)/(4—-C)=b, (5.8)
with

5§1<0<8<b< 1 (5.9)

The &’s are the new confocal coordinates on the pseudo-
sphere and b is a new parameter. We introduce the (radius)?
of the pseudosphere as — R %, with

R?=a' —A=4,— 4>0. (5.9)

In terms of £, and &), the first fundamental form of the pseu-
dosphere in elliptical coordinates is

a2 _ (H—£) [ dg

R? 4 (1= —E&)(—§)
d¢; ]

4 .

(1—8,)(6—§3)¢,

In terms of £ variables and with & = constant boundaries, we
can show that the Hamilton—Jacobi equation for the billiard
system on the pseudosphere is again separable; we can ex-
tend the Poncelet theorems to here as well.

We shall conclude this section by giving the relations
between the elliptical coordinates & and the polar coordinate
r 6 on a pseudopshere. The relations are

(5.10)

rcos 8 =4&,&,/b, (5.11a)
rsin@=+(b—&)(b—§&)/b(1—0). (5.11b)
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The first fundamental form in terms of » and 4 is the well-
known expression

2
%122: l‘jfr2+r2d92, (5.12a)
= dp* + sinh® p dO?, (5.12b)
with
r=sinh p. (5.13)

Even though we cannot imbed globally a pseudosphere
in Euclidean space, it is instructive to evaluate its Cartesian
coordinates formally. Substituting (5.7)-(5.9) into (2.3),
we have

X¥/R?= —(1-£)U=£)/1=b=—(1+r?),

(5.14a)
Y/R?=(b—£)(b—§&)/(1—b)b=r?sin’6,

(5.14b)
ZZ/R*=(—£,&)/b=r?*cos’ 6, (5.14¢)
and
X +y*+22= —R?, (5.15)

which confirms that we have to introduce an imaginary x.

VI. BILLIARDS ON A PSEUDOSPHERE—PROJECTIVE
METHOD

It is known that the geometry of a pseudosphere is the
non-Euclidean geometry of constant negative curvature
known as hyperbolic geometry.®'° Hyperbolic geometry can
be represented projectively inside a quadric known as an
“absolute configuration.”!! (This is known as Cayley’s
disk.) The absolute configuration consists of the images of
points at infinity on the pseudosphere. For simplicty, we
restrict our discussions to three dimensions only.

In order to have a projective geometry proof, we need to
introduce projective invariant notions for “‘reflection” and
“confocal quadric.” After introducing an absolute configu-
ration in the projective geometry, one can define “reflection”
about a plane inside the absolute configuration as follows.
Let us denote the absolute configuration by S,,. Let the re-
flecting plane be T and its “pole” about .S, be Q. (The pole is
defined as the vertex of the cone which is tangent to S, at the
intersections of 7.) Then the image of a given point P, called
P’,isits symmetric point about T"and Q. (See Fig. 3.) Points

N :

Pl
So

FIG. 3. Reflection on a pseudosphere in Cayley’s representation. To con-
struct the reflection of the point P with respect to the line (or plane) T, we
first construct the pole Q. We then obtain the reflection image P’ by requir-
ing that points Q, P, G, and P’ be linear and form a harmonic set. Point G is
the intersection of line QP and T.
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Q, Pand P’ are on a straight line. If this line intersects Tat G,
then these four points satisfy the relation

P'G/P'Q= — PG/PQ, (6.1)

i. e, points QPGP form a harmonic set. One can show that
the map of points to their images about a given plane is a
projective transformation. This transformation leaves S, in-
variant, takes points inside of S; to points inside of .S, and
maps a straight line onto a straight line. If we identify the
straight lines and reflections defined above inside an abso-
lute configuration with the geodesics and ordinary reflec-
tions on a pseudosphere, we can show that these two geome-
tries are equivalent.

To complete the projective proof, we need to introduce a
projective definition for the confocal quadrics. We call three
quadrics projectively confocal if for any plane the three poles
with respect to these quadrics are on a straight line. We refer
the details to the Appendix. In the Appendix, we have also
proven the following lemma.

Lemma: Let P be a point on quadric S that is confocal to
S, in the ordinary sense and let the tangent plane of S at Pbe
T. Let the pole of T with respect to S, be Q. Then line QP is
perpendicular to plane 7.

Using this lemma, we can show easily that if S is confo-
cal to S, in the ordinary sense, the law of reflection of .S with
respect to the absolute configuration S, is the ordinary law of
reflection. (See Fig. 4.) The billiard system with boundary .S
and absolute configuration .S, becomes a billiard system
obeying the ordinary law of reflection. We can use our pre-
vious analysis to establish the existence of confocal caustics
and the Poncelet theorem. Since we can show that a set of
confocal quadrics on a pseudosphere can always be the im-
age of a set of quadrics confocal to S, we thus establish the
existence of confocal caustics and Poncelet theorems for a
billiard system on a pseudosphere projectively. Note that we
cannot use the projective method directly to prove that all
closed trajectories sharing the same caustic surfaces have the
same length. The result can be proven after we introduce the
concepts of distance and angle in Cayley’s representation.
See Ref. 11 for discussions on the implementation of these
measures.

Vil. DISCUSSIONS

In an interesting article, Balazs and Voros studied the
motion of a free particle on a pseudosphere® and imbedded

G

So

FIG. 4. When the quadric boundary S of a billiard system of a pseudosphere
becomes confocal to the “absolute configuration™ S, the reflection on S
with respect to S, obeys the ordinary reflection law.
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the pseudosphere as a quadric surface in a Minkowskian
space:

X3 4+x54+x3=—R2~ (7.1)
We can identify — x2, x2, and x3 in (7.1) with x, 7, and z°
in (5.14), which leads to a realization of this imbedding. By
projecting the hyperboloid (7.1) from the origin to the
x; =1 plane, we obtain projective representation of the
pseudosphere, which is a special case of Cayley’s disks.!* All
the points at infinity on the hyperboloid are mapped onto a
circle, which is the absolute configuration of this representa-
tion.

Balazs and Voros studied the motion of a free particle on
a compactified pseudosphere and used a procedure known to
mathematicians as tesselation, which is the analog of filling
the infinite plane with identical tiles.'* After identifying all
the tiles, we have a finite compact region with periodic
boundary conditions. Balazs and Voros discovered that the
motion on this compactified pseudosphere is always chaotic.
In the present paper, among other things, we study the mo-
tions of a free particle on a pseudosphere, but with reflecting
confocal quadric boundaries. We discover that these mo-
tions are always integrable, lead to confocal caustics, and
obey a generalized Poncelet theorem. Since the present and
Balazs—Voros systems share the same curved space, but with
different boundary conditions, the latter must be the cause of
the different behaviors. In the Balazs—Voros system, the
compactified space preserves translational invariance. Since
locally paralleled trajectories tend to separate exponentially
on a pseudosphere, one can understand the chaotic beha-
viors exhibited in the Balazs—Voros system. Our quadric
boundary conditions provide the necessary focusing effect to
render the system integrable again. It is also interesting to
know how these differences should affect their correspond-
ing quantum systems.

In Ref. 5, Chang and Friedberg conjectured that the
generalized Poncelet theorem is more general than the mod-
el studied in their paper and that it may depend only on the
projective geometrical properties of the system. The findings
in this paper certainly support the above conjecture.
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APPENDIX: PROJECTIVE DEFINITION OF CONFOCAL
QUADRICS

We call a familly of quadrics projectively confocal if for
any plane the poles with respect to these quadrics are on a
straight line. We shall establish that (i) the projective map-
ping of a family of confocal quadrics is a family of projective-
ly confocal quadrics and (ii) typically a family of projective-
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ly confocal quadrics can be mapped projectively into a
family of confocal quadrics. Since our definition of projec-
tive confocal uses only the notions of tangency, straight line,
and collinearity, it is obviously a projective invariant defini-
tion. To prove (i), we need only show that confocal quadrics
are automatically projectively confocal.

We consider a set of confocal quadrics in its canonical
coordinates:

2 2 2
x3 x5 x5
+ + =1 (Al)
4, —A A, —A A;—A
We choose an arbitrary plane T to be
niXy + X, + nyxy =d, (A2)

where n is a unit vector normal to the plane and d is the
distance from the origin to the plane. The intersection of
(Al) and (A2) gives a conic curve through which we can
construct a cone tangent to (A1). The tip of this cone is the
“pole” Q (1) =(0Q,(4), Q,(4), @;(1)). To obtain Q, we
make a scale transformation

x: =x,-/-\’A,‘ _/1 > (A3)
n=npJA, —A/Znj (4, - A). (A4)

The scaled equations for the quadric and the plane are
(AS)
(A6)

which represents a unit sphere and a plane (7"’) with a unit
normal n'. It is easy to compute the pole in the scaled vari-
ables as (see Fig. 5)

Q;=n/d' =S4, — Ay n;/d = n 4, — 1 /d,

(AT)

x4 x4+ xi=1,

ni xi +nj x; +nj x3 =d/\|Ini(4, — A) =d’,

which leads to

Qi(/l)‘—’\/Ai_/‘LQ;(/{)=ni(Ai_}»)/d- (A8)
Note that 4; (4) is linear in A and implies that Q, (4)’s with
different A ’s all lie on the same straight line, with the direc-
tion given by n.

To establish the inverse condition (ii), we note that we
can always map two typical members of the family into a pair
of confocal quadrics. We can now choose a coordinate sys-
tem such that the two quadrics obey the canonical form
(A1l). By choosing plane T paralled to the x,x,, x,x,, and
X,X; planes, we can show that all quadrics in this familly can
be written in the canonical form

x} /A (A) + x5 /A4, (A) + x5 /45(A) = 1. (A9)

The poles for the quadric (A9) with respect to the plane T of
(A2) are

Q; (1) =nA,(A)/d. (A10)
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FIG. 5. In terms of the scaled variables, the quadric becomes a unit sphere.
The pole Q' lies in the direction of the normal n’ and its distance from the
originis 1/d’.

For Q, (1) to lie on a straight line, we can always parame-
trize A; (4) to give

A(A) =4, — A (A11)

This implies that the quadrics are confocal, as promised.

One of the consequences of (A8) is that the line of poles
is always perpendicular to the cutting plane 7. In the event
that the cutting plane is tangent to a confocal quadric, this
polar line becomes the normal of the tangent plane at the
contact point. This is the lemma stated in Sec. V1.
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Fractals and ultrasmooth microeffects
Robert A. Herrmann

Mathematics Department, U. S. Naval Academy, Annapolis, Maryland 21402
{Received 26 May 1988; accepted for publication 23 November 1988)

In this paper, a portion of the nonstandard methods first introduced by Nottale and Schneider
[J. Math. Phys. 25, 1296 (1984)] for the investigation of fractal behavior are replaced by
methods employing polysaturated enlargements. This process yields internal functions that are
ultrasmooth and have a standard part equal to the original fractal. These ultrasmooth
nonstandard functions also possess a well-behaved * integral length concept. Additionally, a
method is presented that shows that if certain behavior is modeled after a simple finitely
discontinuous step function, then this function is also the standard part of an internal

hypersmooth nonstandard approximation.

1. INTRODUCTION

The introduction of nonstandard analysis into the theo-
ry of fractals was accomplished by Nottale and Schneider,’
where, in their basic paper, they discussed the many applica-
tions of fractals as physical models. Nottale and Schneider
also introduced the concept of € differentiability as an alter-
native to * differentiability (i.e., hyperdifferentiability ): We
recall their definition. Any function f:D-»*R, where *R is
the set of hyper-reals and DC *R, is € differentiable at peD if
there exists a positive infinitesimal € such that for every
xe*Rif 0 < |x — p| <€, then (f (x) — f(p))/(x — p) is infi-
nitely close to reR. Nottale and Schneider then show that
there is an € differentiable function £’ that is infinitely close
to a fractal F in R?: Their stated motivation for introducing
this restriction of * differentiation seems to imply that in R?
there may not exist a * differentiable function that is infinite-
ly close to a given fractal; for this reason some such restric-
tion appears necessary.

In a direct application of a major result of the present
paper, it is shown that for nonempty compact KCR"” and
any continuous function f:K—-R™ there exists an internal
function G:*R" — *R™ which is * continuously * differentia-
ble: *f, G are infinitely close on *X; and f=st(G |[*K),
among other properties. When applied to fractals this will
considerably improve upon the concept of € differentiability.
As has now become customary, we assume
* ¢ = (*J7,c, = ) is a set-theoretic nonstandard model for
a superstructure based upon the set H=RUXUY (XY
nonempty ), with *5%” the set of internal entities, and employ
the usual definitions, conventions, and symbolism. Recall
that the star notation “*” that appears before certain objects
indicates that the starred objects are the nonstandard exten-
sions of the unstarred objects. If a set X is a member of 77,
then, conceptually, it may be assumed that XC*X, even
though this may not be the correct technical notation in
many cases. Thus from the intuitive point of view, *X be-
haves as if it is, at the least, a set-theoretic extension.
Further, assume that *.# is, at least, polysaturated.’

The entities (X, 7 y) and (Y, 7 ;) are topological
spaces and, even though certain of our statements will hold
under other criteria, we make the blanket assumption that X
is compact. For any topological space (Z, 77) and for a
pointpeZ,let Y ,(Z) ={G | peGeT" }.Recall that for peZ a
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monad of p,pu( p),isthesetu( p) = N{*G |Ge¥ ,(Z)}and
since X is compact, then *X = U{u( p)| peX}. Any x, ye*Z
are infinitely close, denoted by x =y, if there is some peZ
such that x, yeu( p). For any nonempty DC*X a function
f:D—*Y is microcontinuous at peD if whenever geD and
g=p, then f(q)=f ( p). One of the major reasons that mi-
crocontinuous functions are considered interesting is that if
X and Y are metric spaces, then f:X— Yis continuous if and
only if * f is microcontinuous on *X. Further, a sequence of
functions { f, |#eN} on X into ¥ is equicontinuous if and
only if ge*{ f, |neN} is microcontinuous.> Two functions
[ G: D—*Y preserve nearness if whenever p, gD and p~gq,
then f( p) =G(q). Two functions f, G:D—*Y are infinite-
ly close on D (denoted by f=G or f|D~=G |D) if for each
PeD, f(p)=G(p).

In general, if a property is denoted by a term P in our
metalanguage and expressible by the first-order language for
the structure .#, then the * transfer of P’s defining first-
order characterization is denoted by “* P.” Of course, any
first-order sentence implied by P and expressible in the lan-
guage of .# will hold when interpreted, say by * transfer, in
the structure *.#. It is known that * continuity and micro-
continuity are not equivalent concepts.® Moreover, it is sig-
nificant to note that if ¥ is a metric space and * f, *g map *X
into *¥, then, even if X is not compact, * f~*g implies that
f=g. Thus for many practical applications only nonstan-
dard internal or external functions are infinitely close to a
standard function.

1l. BASIC APPROXIMATIONS

In establishing the following propositions, the polysa-
turated property of the model *.# is of major significance.
First, we need an approximation theorem for microcontin-
uous functions that generalizes the Davis approximation
theorem.? A point ge*Z is near standard if there exists some
peZ such that geu( p). If Z is Hausdorff, then the point p is
unique and we write st(g) = p. For the remainder of the
present work, if the sets 4, Be57, then let ¥ (4,B) denote
the set of all functions with domain 4 and codomain B.

Theorem 1.1: Suppose Y is a regular Hausdorff space.
Let fe*(¥ (X,Y)) be microcontinuous on *X and f ( p) be
near standard for each peX. Define the function
F( p) =st(f ( p)) for each peX. Then Fe# (X,Y) and F is

© 1989 American Institute of Physics 805



continuous on X. Moreover, f, *F preserve nearness and are
infinitely close on *X.

Proof: Suppose that arbitrary peX. Since f( p) is near
standard and Y is Hausdorff than there exists a unique reY
such that f( p)eu(r) and r = F( p). Let p~xc*X. Then
f(x)=f(p)=F(p) imples that u(p)Cf~'[p(F(p))].
Consider any G, €Y (- Since Y is regular then there
existssome Ve¥  ,, suchthat F( p)eVCVC G, . Hence
w(p)Cf'[*Gp,,1 and  u(p)Cf'[*F]. Since
f€*(F (X,Y)) implies that f is internal then there exists
some G,€¥, such that *G, Cf ~'[*V]. Let xG,. Then
#(x)C*G, implies that f(x)ef[ u(x)]C*V. However,
there exists some s€Y such that f(x)~s= F(x). Hence,
S (x)eu(s) implies that u(s) N* ¥V #£0. Therefore, seV im-
plies that F(x) =5s€Gg, . From this it follows that
x€F ~'[ G,y 1and G, CF ~'[Gp ,, ]. Thus Fis continuous
at each peX. Consequently, Fis continuous on X in the gen-
eral topological sense.

Let x, ye*X and x~y. Then x ~y~reX. Microcontin-
uity yields that f(x)=f (y) =f (r) =F(r). Since F is con-
tinuous at 7 then F(r) =~*F(y) =*F(x). Therefore, f, *F
preserve nearness. Finally, X being compact implies that for
each pe*X there exists some reX such that p~r. Thus
F(p)=f(r)=F(r) =*F( p)yieldsthat f|*X=*F |*Xand
the proof is complete.

As usual, let C(X,R) denote the set of all continuous
real valued functions defined on X. For each jeN, 1<j<m,
& ; (X,R) is any subalgebra which separates points and con-
tains some nonzero constant function. If f:Z—*R™, then
f=(f1seer fm) denotes f with its m component func-
tions. Let & denote near standard members of *R. The set &
is also termed the limited or finite members of *R. Further,
pe*R™ is near standard if and only if pe ™.

Theorem 1.2: Let X be Hausdorff. Suppose that
fe*(Z (X,R™)) is microcontinuous on *X and that
S [*X]C £™. Then thereis a function Ge*(% (X,R™ )) that
is * continuous and microcontinuous on *X and for each jeN,
1<j<m, each component function G;€*.«/; (X,R). Further,
(i) f, G preserve nearness, (ii) f, G are infinitely close on
*X, and (iii) if for some standard g, /= *g, then g = st(G).

Proof: Consider f= (f,--., fm)- Then the function
fe*F (X,R™))is microcontinuous if and only if each com-
ponent function f,€*(# (X,R)) is microcontinuous and
S[*X1C ™ if and only if for each f;, f,[*X]C . For
each jeN, 1<j<m, Theorem 1.1 implies that there exists an
F,eC(X,R) such that f ;s *F; are infinitely close on *X and
preserve nearness. For each jeN, 1<j<m, consider the fol-
lowing internal binary relation:

B, = {(x,2)|(x*R) A (x>0) A(ze*«;(X,R))
N (Voloe*X > |*F (o) — z(@)| <x)} .

We now show that B, is concurrent, at least, on the positive
reals. Assume that
{(xl 321 Vseens (XpsZ )}CBj ’

where each x; is a positive real number. Let r = min{x,,...,
x.}. We know from the Stone-Weierstress theorem that
there exists some Q;€o/;(X,R) such that for each weX,
|F; (@) — @; (w)| < r. By * transfer, it follows that for each
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we*X, |*F;(0) —*Q;(w)|<r. Consequently, {(x;,
*Q,)|1<i<k} C B, implies that B; is concurrent, at least, on
the positive reals. Saturation yields the existence of an inter-
nal G;e*o/;(X,R) such that for arbitrary positive reR,
|*F; (x) — G;(x)| < r for each xe*X. Thus for each xe*X,
*F; (x) = G; (x). Since every member of *.«; (X,R) is * con-
tinuous, then G, is as well. Let x, ye*X and x ~y. The func-
tions f;, *F; preserve nearness and are infinitely close on
*X. Consequently,

*E(x)=f;(X)=f; V) =*F;(») .
Thus

GX)=*F(x)=f;(x)=f; ) =*F,(») =G;(y)
yields that f;, G; preserve nearness; G; is microcontinuous
on *X; and, since X is compact, f;, G, are infinitely close on
*X. Now simply define internal G: *X—*R™ by setting
G = (G,,..., G,,) on *X. Then Ge*(¥ (X,R™)) and (i) and
(ii) hold.

Finally, assume that f= *g. Since X is compact then
st(*X) = X. Let peX and geu( p). Then, since *g and G
preserve nearness on *X, it follows that

G(q)=*g(p)=g(p). Consequently, st(G(q))=g(p)
= (st(G))( p) and the proof is complete.

IIl. APPLICATIONS

There are many significant functions that satisfy the hy-
potheses of Theorem 1.2. We list a few examples. Assume
that X is Hausdorff.

(1) For any feC(X,R™) the function * f satisfies the
hypotheses.

(ii) Assume that X is a metric space and that YCR™ is
compact. Consider any family % of equicontinuous func-
tions defined on X into Y. Then each fe*% satisfies the
hypotheses.

(iii) If X is a metric space, ¥ = R™, { £, } is a pointwise
bounded sequence of continuous functions from X into R™,
and { f,} converges uniformly to f; then each ge*{ f,}
satisfies the hypotheses.

When nonstandard mathematical structures are uti-
lized to model natural system behavior certain rules of corre-
spondence should be rigorously applied. In particular, a nat-
ural system process corresponds to standard mathematical
entities or individuals. Nonstandard internal individuals or
entities, or internal properties associated with nonstandard
external entities, correspond to substratum objects or prop-
erties that may directly or indirectly effect natural system
behavior, where the standard effects are either testable or
yield observable data. The third category of properties corre-
sponds directly to nonstandard external entities and, with
certain well-known exceptions such as the standard part op-
erator, are not assumed to effect directly natural system be-
havior, but, rather, are employed in discussions of pure sub-
stratum behavior, where their effects do not yield, directly or
indirectly, either testable effects or observable data within a
standard laboratory setting.* The usefulness of these exter-
nal nonstandard entities as they correspond to a nonstan-
dard type of physical model is conceptually the same as the
usefulness of such physical language descriptions as the
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Everett-Wheeler-Graham many-worlds interpretation.’
These rules of correspondence tend to eliminate a consider-
able amount of ad hoc construction or definition, while
yielding meaningful extensions of the standard natural sys-
tem processes. Physical language models that follow these
rules or correspondence are termed nonstandard physical
world models or NSP-worild models.

Under the NSP-world correspondence scheme, if an ap-
propriate entity f possesses an internal nonstandard prop-
erty and the standard object obtained by such processes as
the standard part operator applied to f does not possess a
corresponding standard property, then this is interpreted to
mean that the internal nonstandard property is not detect-
able within the standard natural world after f is inserted
into the natural system. This does not contradict the above
rules of correspondence, for it is the direct or indirect effects
that are either testable or yield observable data, while the
property itself is not directly detectable.

In applications of nonstandard analysis to the behavior
of a natural system, when a characterizing standard entity is
infinitely close to an internal nonstandard entity, then the
microeffects characterized by the nonstandard entity are
conceived of as either a basic cause for the standard behavior
or a process that sustains such behavior. This internal pro-
cess is termed an ultranatural process and is hidden from
direct observation within the standard laboratory environ-
ment. A major application of the procedures established
within the present paper is relative to the concepts of the
design and order that can be rationally assumed to influence
the development of a natural system. The concept of € differ-
entiability, if corresponded to a nonstandard physical con-
cept of smoothness, should probably not be considered as a
hidden aspect of fractal behavior in lieu of other internal
processes since € differentiability is an external property.
This situation is eliminated by application of the following
theorem.

Theorem 3.1: Let KCR" be compact. If
feXF (K,R™)}) is microcontinuous on *K and
SF[*K]1C "™, then there exists a function Ge*(# (R”,R™))
such that the following holds.

(i) The function G is * continuously * differentiable on
*R".

(ii) If n = 1, then Gis * continuously * differentiable on
*R” for any order ke*N.

(iii) With respect to *K, the function f and the restric-
tion G |*Ke*(F# (K,R")) preserve nearness.

(iv) The restriction G | *K is microcontinuous and uni-
formly S continuous on *X.

(v) The function f and restriction G |*K are infinitely
close on *K.

(vi) If for standard g, f'= *g, then g = st(G |*K).

Proof: Assume that K is compact, fe*(F (K,*R™)) is
microcontinuous on *K, and f[*K]1CZ"™. Let Z(4,R)
denote the algebra of all real valued polynomials in real coef-
ficients in n variables considered as components and defined
on ACR". In general, by * transfer, for each jeN, 1j<m if
P;e*(Z (R",R)); then the internal function defined on *R™
by P= (P,,..., P, ) satisfies the properties listed in (i) and
(ii) of Theorem 3.1. Application of Theorem 1.2 implies that
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there exists a microcontinuous function He*(¥ (K,R™))
such that each component function H;e*(Z (K,R)) and f,
H satisfy (i)-(iii) of that theorem. Moreover, since H is
internal and microcontinuous on *K, then H is uniformly .S
continuous on *K.> However, by * transform, each internal
H; may be extended to an internal G,e*(Z (R",R)) by con-
sidering H; defined on the internal domain *R”. Thus H;
= G;|*K. Obviously, by letting G = (G,,..., G,,) on *R™
and H = (H,,..., H,,) on *K it follows that G satisfies parts
(i) and (ii) of Theorem 3.1 and that H = G |*K satisfies the
remaining parts. This completes the proof.

When compared with the concept of ¢ differentiability
the conclusions of Theorem 3.1 appear more significant for
the following reasons. The function G is internal and thus
has all of the first-order * transfer properties which hold for
the algebra Z (R",R). In the case that n = 1, the resulting
m-dimensional curve G[*K]CR™ has a well-behaved
hyper-real length obtained by application of the * integral
operator and all of the * transformed length properties.
Moreover, in this case, since G is * differentiable for any
order ne*N, then G is ultrasmooth. Since G is microcontin-
uous and uniformly S continuous on *K it will also satisfy all
of the implied properties associated with these two signifi-
cant concepts. From the NSP-world viewpoint, if the stan-
dard function is conceived of as representing a behavioral
pattern produced by natural processes associated with a nat-
ural system, whether or not it is a fractal type, then G can be
conceived of as a highly ordered, smooth, regular, and even a
somewhat conventional ultranatural process that when ap-
plied to an associated ultranatural system, yields what may
be perceived within the laboratory environment to be an ir-
regular or even chaotic pattern of behavior.

However, it is obvious that G is not unique and that
other distinctly different algebras would generate a function
G, having all the properties listed in Theorem 3.1, as well
others not shared by G. Although for this analysis it is clearly
unnecessary, it may be that there are specific algebras that
could be more closely associated with specific types of fractal
behavior. The formal infinitesimal analysis that establishes
that certain phenomena, for example, particle trajectories in
quantum mechanics,® are fractal in character tends to utilize
members of well-behaved algebras which also share the
properties stated Theorem 3.1.

IV. STEP FUNCTIONS

As a preliminary to this section, we introduce the fol-
lowing definition. A function f:{a,b] >R™ is differentiable
Con [a,b] ifitis continuously differentiable on (a,b), except
at finitely many removable discontinuities. This definition is
extended to the end points {a,b} by application of one-sided
derivatives. For any [a,b] consider a partition
P={aya,,...a,.a,. .}, n>l, a=a, b=a,,,, and
a;_, <a;, 1<j<n + 1. For any such partition P let the real
valued function g be defined on the set
D= [aga,)U(a,a,)U- - -U(a,,a,,,] as follows: For
each xe[aya,), let g(x) = r,eR; for each xe(a;_,q;), let
g(x) =r;eR, 1<i<n; and for each xe(a,,b], let
g(x) =r, . €R. It is obvious that g is a type of simple step
function.
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Theorem 4.1: There exists a function Ge*(.# ([4,b],R))
with the following properties.

(i) The function G is * continuously * differentiable and
* uniformly * continuous on *[a,b].

(ii) For each odd ne*N, (n>3), Gis * differentiable C of
order n on *{a,b].

(iii) For each even ne*N, G is * continuously * differen-
tiable in *[a,b], except at finitely many points.

(iv) If ¢ =min {r,..., 7, }, d=max{r,.., 7,1 },
then the range of G = *{¢,d], st(G) at least maps D into
[c,d] and (st (G))|D =g.

Proof: First, for any real ¢,d, where d #£0, consider the
finite set of functions

hi(x,c,d) =4(r;y — 1) (sin((x — c)n/(2d) + 1)) + 15,

1<j<n. Each 4; is continuously differentiable for any order
at each xeR. Observe that for each odd meN, each mth deriv-
ative 4 {™ is continuous at (¢ + d) and (¢ —d) and & m
(¢c+d)=h{"(c—d)=0foreach,.

Let positive deu (0). Consider the finite set of internal
intervals {[aga, — 8),(a, + 8,a, — 8),..., (a, + 6,b)} ob-
tained from the partition P. Denote these intervals in the
expressed order by I;, 1<j<n + 1. Define the internal func-
tion _

G, ={(x,r)|xel YU~ - -U{(xr,, ) |xel, ., }.

Let internal I = [a; — 8,a; + 6], 1<j<n and for each
xel %, let internal

Gi(x) =4(r;, —r)(*sin((x — )7/ (26) + 1)) +7r; .
Define the internal function
G, = {(x,G, (x))|xeI 1}U- - -U{(x,G, (x))|xe I}}.

The final step is to define G=G,UG, Then
Ge*(F ([a,b],R)).

By * transfer, the function G, has an internal * contin-
wous * derivative G{" such that G{"(x) =0 for each
xel,U- - -UI, . Applying * transfer to the properties of
the functions #; (x,c,d), it follows that G, has a unique inter-

nal * derivative
GV =(1/(48))(7; ., — r;)w(*cos((x — a;)7/(25)))

foreachxel { U+ - - UI!. The results that the * left limit for
the internal G'{!’ and the * right limit for internal G$" at
each @; — 8, as well as the # left limit of G {"’ and the # right
limit of G {" at each a; + & are equal to zero and 0 = G {"
(a; — 8) = G§"(a; + &) imply that internal G has a * con-
tinuous * derivative GV = G (P UG " defined on *[a,b].
A similar analysis and * transfer yield that for each
me*N, m>2, G has an internal * continuous * derivative
G'™ defined at each xe*[a,b], except at the points @, + &
whenever 7;, | #7;. However, it is obvious from the defini-
tion of the functions 4; that for each odd me*N, m >3, each

J
internal G can be made * continuous at each ¢; + & by
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simply defining G'™ (a; + 8) = 0; with this parts (i)-(iii)
of Theorem 4.1 are established.

For part (iv) of Theorem 4.1 assume that r;<7;, ;.
From the definition of the functions 4; it follows that for
eachxel, UIY UL, ,,r,<G(x)<r; . The nonstandard in-
termediate value theorem implies that G [*[g;.q;, ,]]

= *[rj,rj +1] and, in like manner, when r; , | <7r;. Hence,
G[*[a,b]] = *[c,d]. Clearly, st(D) = [a,b]. If peD and
xeu( p), then G(x) =r; =g(p) for some j such that
1<j<n + 1. This completes the proof.

The nonstandard approximation Theorem 4.1 can be
extended easily to functions that map D into R™. For exam-
ple, assume that F:.D—R> and the component functions F,,
F, are continuously differentiable on [a,b], but that F, isa g-
type step function on D. Then letting H = (*F,, *F,, G) on
*{a,b], where G is defined in Theorem 4.1, we have an inter-
nal * continuous * differentiable function H: *[a,b] - *R3,
with the property that st(H)|D = F.

Propositions such as Theorem 4.1 are being employed to
model the behavior of natural objects which appear to alter
suddenly some numerically expressed characterizing prop-
erty.

V. CONCLUSION

Nonstandard methods utilizing polysaturated enlarge-
ments as applied to the study of fractals apparently have
some significance relative to the design, order, and existence
of possible microeffects. These methods greatly improve
upon previous results that associated NSP-world smooth ap-
proximating functions with parametrized fractal curves.
The selection of nonstandard smooth approximating func-
tions from different algebras may also prove to be significant
when analysis establishes that a pattern of behavior may be
characterized by a fractal. Moreover, these nonstandard ap-
proximating functions have a very well-behaved length
which satisfies all of the known first-order properties of the
length of a curve as obtained by application of the standard
Riemann integral. It is believed that these nonstandard
methods under various generalizations and extensions will
lead eventually to a better understanding of the underlying
processes that generate the behavior of natural systems as
they are perceived within the laboratory environment.
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The topology and geometry of the space of null geodesics N of a space-time M are used to
study the causal structure of the space-time itself. In particular, the question of whether the
topology of N is Hausdorff or admits a compatible manifold structure carries information on
the global structure of M, and the transversality properties of the intersections of skies of
points tell whether the points are conjugate points on a null geodesic.

I. INTRODUCTION

The causal structure of space-time—which is modeled
as a Lorentz manifold M—is of great importance, both phy-
sically (in the question of whether data at one point of M can
affect what happens at another) and philosophically (owing
to the paradoxes inherent in the existence of closed timelike
curves)."? Since the causal structure of a space-time is inti-
mately connected with the null geodesics of that space-time,
one might suspect that interesting information about the
causal structure of M is coded naturally in the structure of
the space of null geodesics, say V.

In Sec. II of this paper, we consider N both as a topologi-
cal space, and, when appropriate, as a smooth manifold.
There are two natural but slightly different (though inti-
mately related) ways of inducing a topology on N, and we
will see that these both actually induce the same topology on
N. Furthermore, it is not necessarily the case that ¥ admit
any manifold structure compatible with its topology, as a
simple example shows. A sufficient condition for NV to have a
natural manifold structure is that M be strongly causal, al-
though this condition is not necessary. If this topology is
non-Hausdorff, then M must have a naked singularity of a
particularly naked type.

In Sec. IIT we restrict ourselves to the case where M is
strongly causal, and N is therefore a manifold (though not
necessarily Hausdorff). It is noted that a vector field on M
induces a vector field on /V if it is a conformal Killing vector
field, and that a vector at a point of NV gives a vector field on a
null geodesic of M connecting it to a neighboring null geo-
desic. In this case, one can show that given any point xeM,
the corresponding subset X of N, called the sky of x, is a
smoothly embedded $?in N.

Finally, in Sec. IV, the results of Sec. I11 are used to give
an interpretation of the conjugacy of two points on a null
geodesic in terms of N, and some related ideas.

Il. THE TOPOLOGICAL STRUCTURE OF ¥

Let M be a space-time, i.e., a C © manifold with a Lor-
entz metric. Denote its tangent bundle by TM, the reduced
tangent bundle TM \ {zero section} by T'M, and the fiber
above a point x by T, M. Then 7'M has the quotient space
UM given by identifying proportional vectors at each point x
in M, and UM is foliated by the natural lifts of the geodesics
of M. Note that although a geodesic of M may fail to be a
submanifold of M, its lift to UM is always a submanifold of
UM. The set G, the space of geodesics of M, is given by
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identifying points in UM that lie on the lift of a common
geodesic. Then G naturally splits up into the disjoint union of
G ™, N, and G —, which are the spaces of timelike, null, and
spacelike geodesics, respectively; removal of N from G dis-
connects G, and N is the common boundary of G * and G —.
We can regard N as this subset of G, with the subspace topol-
ogy induced by the quotient topology from UM.

Alternatively, we could restrict from UM, the bundle of
directions in M, to NM, the bundle of null directions, then
pass to the quotient space in the same way; denoting the
quotient map from UM to G by p, it follows® from the facts
that p~'( p(NM)) = NM and NM is closed in UM that we
obtain the same topology in either case.

Any point in N, then, corresponds to a curve in M,
namely the null geodetic curve whose lift it is the projection
of; also any point in M gives a subset of ¥, namely the set of
all null geodesics passing through it. A useful notational con-
vention that will be adopted here is to use lower case roman
letters to represent points of M, and the corresponding upper
case letter to represent the subset of N determined by it, and
to use lower case greek letters to represent points of », and
the corresponding upper case greek letters to represent the
null geodesics in M that they determine.

First, then, we note that NV need not have any manifold
structure compatible with its topology.

Example 2.1: Let M be Minkowski space, with the usual
coordinates (#,x,y,z), and let ZX Z act on M by

(m,n)- (txp,z) = (t + mvV2,x + nyp,z).

Then the quotient space M /ZXZ has the topology
S' xS "X R? buttheratioofthelengthsoftheS ""sisv2. Thus
any null geodesic in the (#,x) plane becomes a dense curve in
the y = z = O torus of M /Z X Z and so any neighborhood of
such a null geodesic will actually contain all the other geode-
sicsin the y = z = O torus. Thus the space of null geodesics of
this space-time fails to satisfy the separation axiom T, and
so the topology cannot be induced by a differentiable struc-
ture.* a

On the other hand, if the space-time is strongly causal—
as any space-time forming a reasonable model of the uni-
verse must be—then this cannot happen, as follows from
Proposition 2.1

Proposition 2.1: Let M be strongly causal. Then N is
naturally a smooth manifold with a C = structure inherited
from N *M.

Proof (See Ref. 4 for notation): Let ueN *M, and let
(U,x) be aflat chart containing w. Then 7 ( U) is an open set
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containing 77(u), so by strong causality there is an open sub-
set Vof w(U) such that 7(u) lies in ¥, and any causal curve
intersects Vin a single connected component. Then the lift of
any null geodesic in M to N *M will intersect 7~ (V) in a
single connected component, and hence W, defined by
W =a""(V)NU, gives a flat chart ( W.x| W) containing u,
and such that any leaf of the foliation intersects Win a single
connected component. Hence (Ref. 4, pp. 202ff) ¥ inherits
the structure of a C © manifold from N *M, and p: N*M >N
is a smooth submersion. ]

As we can see from the proof, strong causality is not
necessary. In fact the necessary condition is simply that no
null geodetic curve I may be such that there is a sequence of
points, each further along I" than the preceding one, which
has as a limit some earlier point of I', and is such that the
tangents at these points tend to the tangent at that limit
point. In other words, no null geodesic may approach itself
arbitrarily closely and tangentially. Indeed it may even have
self-intersections as long as they are transverse, without des-
troying the manifold structure of N. However, strong causal-
ity is such a natural condition that it is the one which will be
used here to guarantee a manifold structure on N.

Even under these circumstances, N may fail to be Haus-
dorff as a topological space.

Example 2.2: Let M be Minkowski space minus the ori-
gin. Then N is given by taking two copies of R*>X.S? and
identifying (x,p) in one copy with (y,q) in the other when-
ever x = y# (0,0,0) and p = g, for x,peR>, p,qeS?, which
gives a non-Hausdorff manifold. O

In the case where M is strongly causal, we can use the
technology of ideal points® to study the consequences of N
being non-HausdorfT.

Proposition 2.2: Let M be a strongly causal space-time,
and N its space of null geodesics. Then if N is non-Hausdorff,
M must be nakedly singular.

Proof: Let v,,7,€N be such that whenever U, is a neigh-
borhood of ¥, for i = 1,2, U,NU,#%. Then one can con-
struct a sequence {¢, },,. . with the property that ¥, and 7,
are both limit points of {1/, },,. o-

Then in M there is a sequence of null geodesic curves
{¥,},.o which approaches both I, and T', as n increases.
Now, let x,el"; and V; be an open neighborhood of x; (for
i = 1,2) such that ¥,NV, = &. Without loss of generality, it
can be assumed that each ¥, intersects both ¥, and ¥, for
n> 0. Next, define sequences {c’, },. , for i = 1,2, such that
¢’ eV, for n> 0, and ¢, approaches x, as n approaches infin-
ity. We can also assume that ¢?,&J * (¢',) for n>0, by an
appropriate choice of ¥, and V,.

Nowletzel * (x,). Then ~ (z) isan openset containing
x, and so for n large enough, ¢*,€l ~(z), and therefore
¢',€ I~ (z).But thisimplies that x,€ I ~ (z), since I ~(z) is
closed.

Next, let wel ~ (x,). Then I * (w) is a neighborhood of
x,, and so must intersect I ~ (x,), which in turn implies that
wel ~ (z). Finally, we observe that this is independent of the
choice of the point x, on T}, and so any pointin  ~(T",) lies
inl ~(2),thus —(I'))CI (2).

But I', isafuture endless null geodesic, andso 7 (T, ) is
a terminal indecomposable past set—abbreviated to TIP—
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lying inside a proper indecomposable past set, a PIP. (See
Ref. 5 for the definitions and a discussion of the importance
of these objects, and the dual future sets, TIF’s and PIF’s.)
Hence M is nakedly singular. O

Notethatbyadualargument, I *[T',] CI * (z')forsome
z'eM, so we also have a TIF that is a subset of a PIF. The
converse of this result is, however, false: for the subspace of
Minkowski space with the standard coordinates given by
x? + y? + 22 < lis nakedly singular, but its space of null geo-
desics is Hausdorff (being a subspace of R*>X S?, which is
clearly Hausdorff).

Now, one can define an open neighborhood of the ideal
point given by I 7 [I",] as an open set in M that contains all
the points of ", to the future of some point on I',. Then in the
notation used in the proof of Proposition 2.2, if U'is a neigh-
borhood of the ideal point given by I ~[I',], then there is
some null geodesic ¥, which enters U, and eventually
reaches ¢?,. Thus a geodesic observer can get arbitrarily
close to the singularity, and get away again, without falling
in. The point of this is not only that the singularity can be
approached and then left again, but that this can actually be
done with no acceleration.

One final point about the singularity that causes V to be
non-Hausdorffis thatif ¥, is future complete, then7 ~[I",] is
an «-TIP, i.e., represents an ideal point at infinity, which
the members of {¥, },.. , approach arbitrarily closely before
returning to a neighborhood of x,. So in this sense, there are
null geodesics in M that can go arbitrarily far away, and
return to the “interior” of M. Thus one can get arbitrarily
near infinity, and return to an arbitrarily small neighbor-
hood of x,, while remaining on a causal path (and, again,
without undergoing any acceleration).

One particular example of a space-time for which this
non-Hausdorff condition holds is that of a plane wave space-
time.® The above considerations show that the plane wave
space-time does not have a simple asymptotic structure, and
that it is, therefore, difficult to use asymptotic techniques to
try to study the mass energy carried by the wave.

Corollary 2.1: If M is strongly causal, then for any point
x in M, XC N, the sky of x is a smooth $%in N.

Proof: NM is the bundle of null directions over M, and
let N, M —which is topologically S ?—be the fiber of NM
over x. Then if p: NM— N is the projection, X is p(N M),
and since the fibers of NM lie inside those of UM, which are
transverse to the geodesic flow, it follows that p is regular at
all points of N, M. Hence p|N, M is a smooth, regular bijec-

_tion, and therefore a diffecomorphism. O

lli. VECTORS AND VECTOR FIELDS ON M AND ¥

First, we observe that a vector field ¥ on M will project
to one on N precisely when its flow ¢, preserves null geodesic
curves; but this is just the condition that ¥ be a conformal
Killing vector field, since the conformal motions of M are
those preserving the causal structure and hence the null geo-
desics. On the other hand, a vector field on N will correspond
to a vector field on M precisely when its flow preserves the
skies of points.

More interestingly, one can consider the interpretation
in M of a vector at a point of N. So let v be a vector in T, N,

R.J. Low 810



i.e., v is the tangent to some curve through y. Then v is the
projection of a vector field along I" in M that connects points
of T to points of a neighboring null geodesic; in other words
it is the projection of a Jacobi field on I'. Furthermore, any
Jacobi field on I given by a one-parameter family of null
geodesics containing I" will project to a vector at y. Call such
a Jacobi field a null Jacobi field.

Now, fix some point x on I', and make a smooth choice
of affine parameter on all the null geodesics through x. Then
there is a two-parameter family of null Jacobi fields along T’
vanishing at x given this choice of affine parameter on the
null geodesics passing through x, and this family precisely
describes T, N. This relationship can be exploited to give an
interpretation in N of the conjugacy of two points in M along
a null geodesic. _

First, we develop a little notation. Two points, x and y,
lying on a common null geodesic I" are said to be null conju-
gate of degree n if there are n linearly independent null Ja-
cobi fields along I" vanishing at both x and y. Note that two
points in space-time can be null conjugate of degree at most
two. (It is easy to see that in a strongly causal #n-dimensional
Lorentz manifold, two points can be null conjugate of degree
atmostn — 2.)

Then we can give the following classification of points
that lie on a common null geodesic. Let x,pyeM, and let ye N
such that x,yel". Then yeXN Y, and we have the following
cases.

Classification 3.1:

(1) T,XNT,Y = {0}: x and y are not conjugate along
F’

(2) T,XNT,Y = {t: R} for some veT,N: x and y
are conjugate of degree one along I', and v is the projection of
some Jacobi field that vanishes at both x and y.

(3) T,X =T, Y:xand yare conjugate of degree 2 along
I', and any element of 7, X gives a null Jacobi field along I'
with a representative Jacobi field that vanishes at both x and
. O

One can also give a classification of vectors at a point of
N in similar terms—Ilet yeM: then we have the following
classification.

Classification 3.2:

(1) v¢T, X for any xel: so v gives a null Jacobi field
connecting I to neighboring null geodesics that never meet
|

(2) veT, X for precisely one xeI: v gives a null Jacobi
field connecting I" to neighboring null geodesics through x
that never meet T again; i.e., TNI(x) =2.

(3) veN;_, T, X,: the points x;-*-x, on the null geo-
desic T are all conjugate to each other along I" by a single
Jacobi field. O

A point that is conjugate to a spacelike two-surface can
be described in a similar way. Let SC M be a spacelike two-
surface; then S defines a two-dimensional surface in N, as
follows. Let x€S; then there are precisely two future pointing
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null directions that are orthogonal to S at x. As x varies over
S, we obtain a subset 2 of ¥ (which will be diffeomorphic to
the disjoint union of two copies of S if S is orientable, or a
double cover otherwise).

Now, similarly to the definition of null conjugacy, we
say that x is conjugate to S along " if

(1) xeI” and y€3,

(2) there is a nontrivial Jacobi field along I that vanish-
es at x, defined by a one-parameter family of null geodesics in
3, the orthogonal congruence to S.

Then we obtain the following classification.

Classification 3.3: Let xeM lie on the null geodetic curve
I, where y€X, the orthogonal congruence to S, a spacelike
two-surface in M. Then x is conjugate to S along T if
T,XNT,X is nontrivial, and the degree of conjugacy is the
dimension of T, XNT, 3. O

Note that if xeS, then XN = {y,,7,}, where 7, and 7,
are the two null geodesics through x which are orthogonal to
S,and T,,X =T,Z2, for i=1,2. However, the converse
need not be true—it could be the case that two null geodesics
in £ will focus at some yeM \ S, and y happens to be conju-
gate of degree 2 to .S along each null geodesic. In fact, this can
even happen in Minkowski space, by a careful choice of S.

IV. CONCLUSIONS

By examining the space of null geodesics NV of a space-
time M, one can obtain useful information about the causal
structure of M; in particular, non-Hausdorffness of the to-
pology of ¥V tells us that M is nakedly singular in such a way
that a singularity can be approached and then left without
any acceleration, and the lack of a manifold topology tells us
that M cannot be strongly causal. When M is strongly causal,
and N is therefore a manifold, the skies of points in M are
smooth S ?’s in ¥, and two points on a common null geodesic
are null conjugate along that geodesic precisely when the
intersection of their skies is nontransversal.
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An explicit realization is given in terms of even and odd diﬁ'erg}tial operators of certain
highest weight representations for the affine Lie superalgebra g/, ;.

I. INTRODUCTION

Kac and van de Leur introduced in Ref. 1 a collection of
highest weight modules V,,,, meZ, over the infinite-dimen-
sional general linear Lie superalgebra a |, . These modules
remain irreducible under the action of the Bfrincipal subalge-
bra, isomorphic to the affine superalgebra g/, ,; (“super Hei-
senberg algebra”).

In the nonsuper case, the irreducibility of a module, say
V, under a Heisenberg algebra leads to a realization of V'as a
bosonic Fock space, i.e., Vis realized as a polynomial alge-
bra, and the action of the Lie algebra is given in terms of
differential operators. This construction has many applica-
tions, especially in the theory of soliton equations and in
string theory.

In this paper we show similarly that the modules ¥, of
Kac and van de Leur can be realized as “super Fock spaces”,
i.e., as a tensor product of a polynomial algebra and an exte-
rior algebra. For representations of other Lie superalgebras
this has been observed by Golitzin.? One might hope that
this construction has similar applications as in the even case.

il. THE LIE SUPERALGEBRA 31 ,+ AND THE MODULES
Vi

In this section we recall some definitions and results
from Ref. 1. We take as a basis for g/, ,; :

10 0 0
'1=( 0 0)’ ”=(o —1)’

(2.1)
01 00
X*’(o o)’ X—=(—1 o)'
We define for xegl/, ,,
x(n):=t"xegl,,, (C[4,t ~']). (2.2)

The commutatoring/,,, = gl,,; (C[#,¢ ~']) @ Ccis given by

[x(n),y(n)] = [x,y)1(m + n) + mb,, , .o Str(xy)c,
(2.3)

where Str is the supertrace.
Explicitly we have

[Am).X, (n)]= FX, (m+n),

[#(m).X, (m)] = £ X, (m+n),
[/1("1):/1(”)] =mam+n,0c’
[/*‘(m)’.u(n)] = _m6m+n.oca

[X.0m).X_(m) = (A +p)(m + 1) —mb,, , ,oc,
[X. (mX, (1] o,

[A(m),u(n)] =o.
(2.4)
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Note that {A(m),m#0} and {u(m),#0} generate infinite
Heisenberg algebras.

We consider representations 7,, on V,, with highest
weight vector |m) that satisfy

. X (1))|m) =0, n>0,
TlX — (n+ 1))|m) =0, n>0,
TaA(n))im) =0, n>0,

T (p(n))m) =0, n>0,

7 (c)|m) = |m), (2.5)

0, m}O,
T(A(0))jm) = —|m), m<O,
m|m), m>0,

Introduce a gradation on gl,,, by

deg A(n) = 2n,
degu(n) = 2n,
deg X, (n) =2n+1,
degc=0.

(2.6)

Then the modules ¥, have a g dimension given by

A+

(1 —g*)?

(+g*h?
(1 _qZk)2 ’

1

2m + 1 H

l+q k>1

q m = 1

14g- 2! kI;[l

, if m>0,

if m<O.
(2.7)

1l. VACUUM SPACE AND ZOPERATORS
Define the vacuum space of ¥, by
Q, ={veV,|m,(A(m)=m,u(n)=0, Vn>0}.
3.1
By general results on the modules V,, we have

Ve =C[ X395, 5j>0] @ Q. (3.2)
(see, e.g., Golitzin,” or in the nonsuper case Lepowsky and
Wilson,*) where A(n) and u(n) act as 8 /dx,,,d /dy,, for
n>0, and as nx,,, — ny,, for n <0, respectively. From Eq.
(2.6) it follows that the g dimension of the vacuum space is
given by
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1+q2’"+‘n(1+q2k 2%, m>0,
dim, 0, = .

s l+ 2k—l)2’ m<o.

1+q—2m-l J;Il( q

3.3)

We will construct operators that map 2, into itself. To this
end we introduce formal series

X, 2 =3 z7 V)X, (k). (3.4)
keZ

Then we have

[A(n), X, (2)] = FZ"X, (2), (3.5)

[u(mX, ()] = £27X, (2). '
Define

E*, (2): =exp[:]:ekz>:om——”lz(:—t—k—)z¢”‘],

e=+1, (3.6)
and

Z, Z:=E U)X, (2)E £(2). (3.7

Lemma 3.1: The homogeneous components of
Z . (z)map Qy,_ into itself.
Proof: Using

(4B} =k1 = [A,exp(B)] = kexp(B), (3.8)
we have
[A(m),E< (2)] = €2"L< (2),
[#(m),E< (2)] = —€2"E_ (2),
[A(—n),E*, (2)] =€Z"E*, (2),
[u(—m,E5 ()] = —ezz”E‘+ (2),
[A(n),E€, (2)] =0, (3.9)
[£(n),E, (2)] =0,
[A(=n)ES ()] =0,
[¢(—m,E< ()] =0,
n>0, e= +1.
Combining (3.5), (3.7), and (3.9) we find
[A(m),Z, (2)] =0, Vn#0. (3.10)
[#(n),Z ()] =0,
Expanding Z , (z) in powers of z:
Z, (D=3 Z, (k)z= =D, (3.11)
keZ

it is clear that the Z_ (k) commute with the A(n),u(n),
Vn#0. We leave it to the reader to show that the Z |, (k) are
well-defined operators on V,,,. This proves the lemma. W

We will refer tothe Z ,_ (z) [or also to their components
Z , (k)] as Z operators.

IV. THE COMMUTATION RELATIONS OF THE Z
OPERATORS

In this section we calculate the commutation relations
of the Z operators in the modules V,,,.
Theorem 4.1: In V,, we have
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[Z,(k),Z_(D] = U+ m)dy 10

Proof: We need a number of lemmas.
Lemma 4.2:

(a) [ES (2L,EL(2)] =0, &= +1,
(b) [X, (2),E% (2)] = [X, (2),E, (2)] =0

Proof of Lemma 4.2: (a) This follows from the fact that
{(A +u)(k), keZ} is an Abelian subalgebra [see Eq.
(2.4)]. (b) Here one uses

4.1

[(A +m)(k),X, (n)] =0, Vk,nel (4.2)
[ ]
Define
A +w)@):=Y 27 (A +p) (k) (4.3)
keZ
and let the ““odd formal delta function” be
8(2): = 222“' (44)
€Z
and define
D°5°(z):=2izz"“. (4.5)
eZ
Lemma 4.3:
(X, (2),X_(2,)]
= (A +p)(2,)8%°(z,/2,) + D°°(z,/z,)c. (4.6)

Proof of Lemma 4.3:
[X,(2)),X_(2,)]

= 3 27 @k 0zm OO X ()X (m)]

k,neZ

21_ (2k + l)zz— (2n—1)

k.neZ

X{(A+p)(k+n) + n5k+no"}

= 3w +mta(2)7
2,

k,neZ

Let

f@uz):= 3 2, fyeC (4.8)
ijeZ

be a formal power series in z,,z, such that for every peZ the
number of f; with [ + j=p is finite. [This means that it
makes sense to consider f°(2,,2,).]

Lemma 4.4
(@) f(21,2,)8° (21/2,) = f(2,,2,)8° (2,/2,),
(b) [f42,,2,)D°8° (2,/2,)
= f*(2,,2,) D°8° (2,/2,)

1

-2 —f (zl’zz)lz.—z (ZI)
2 z,

Proof of Lemma 4.4: For (a) we have
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fe(zl’zz)(SO(z—)

1
2,

i2j,2k — |, —2k+ 1
= z f;jzilhz%jz% zy T

ij,keZ

— z fuzf(“'k) - lz%(j—k) +1
i

ifj,keZ
— z f;jzfl—lz%(i+j—l)+l
i IeZ
201
=y /’.723"25"(?) =f*(2,,2,)8° (?) (4.9)
i leZ 2 2
and for (b):
f(z,,2,) D °8° (El—)
Z2
= s ram(E)
ij,leZ Z;
—_ Z ﬂ,-zf”*')_lz%”_”“l
ijlez
— z f'jsz—lzg(j+1~k)+1(k_l-)
ijkeZ
_ i) z, 2k —1 B i z, 2k — 1
= ;f;jZZk E(fulzl)z
ijkeZ Z, ijeZ keZ\2Z
=fe(22,22)D°6°(—z-‘-) - lzlife(z,,zz) L — 2,50(-5-).
z, 2 9z *\z,
(4.10)
[ ]

Lemma 4.6:
[Z+ (Zl),Z_ (Zz)] =D060(21/Zz) + (4 +,Uf)(0)50(21/22)

Proof of Lemma 4.6: We have, using definition (3.7)
and Lemmas 4.2 and 4.3,

[Z,(2),Z_(2,)]
=E_(2))E_(2,) 7' [X,(2)),X_(2,)]
XE, (2)E (z)"!
=E _(z)E_(2,) " '[(A +p)(2))8°(2,/2,)
+ D°%(z,/2,)c1E () E, (2,) " 4.11)
Next, using Lemmas 4.4 and 4.5 and formula (4.6) we find
(Z,(2)),Z_(z,)]
1 a

= (A +,u)(22)6°(ﬂ) + D°6°(z—‘)c — 721 —

22 22 azl
X[E_(2)E,(z)];, -,

XE_(z,)"'E, (zz)—'a"(z—‘). (4.12)
Z3
Now
1_ 43
721 a_ZI[E—(Zl)E+ (zp1]
= [ S A+m(—kA+ (4 +u)(k)zr2"]
k>0
X[E_(z,)E, (2] (4.13)
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using definition (3.5) and Lemma 4.2. Hence

[Z,(2),Z_(2,)] = D°8°(z,/2,) + (A + ) (0)8°(2,/2,).
(4.14)

[ ]
We continue the proof of Theorem 4.1. Using the expan-
sion (3.11) we find from lemma 4.6:

z zi (Gk+ D @i- VI[Z,(k),Z_(D]

KEZ
=3 7" "z; @ Pn+ (A +p)(0)). (4.15)
Hence -
(Z,(R),Z_(D] =+ A +p)(0))0i 110, (416)

Now one easily checks that (1 + ) (0) is a central element
and since V,, is irreducible (4 + ££) (0) acts as the constant
m [see Eqgs. (2.4) and (2.5)]. This proves the theorem. W

V. REALIZATIONOF V,,

On an exterior algebra A (v;) with generators v, we de-
fine operators of interior and exterior multiplication by
W), Ao A=Y (= D80, Aoy A= A A=+,

= (5.1)
e, Aoy, A--i=uv; Ao, Ay, A=
These operators satisfy

[i(v).€e(8)] 4 =8,
(5.2)

[i(v;),i(v;)] . = [ew;),e(v))] . =0.

The operators Z, (k) with commutators described by
Theorem 4.1 act on the exterior algebras

A, = AW 05Ws. sy 4 1 Wapm 4 19ee)s M0,

A
= AU, W03 W350e0V _ 2 150 _ gy _15e2), M <O,

(5.3)
by operators
Z, (k) =i(Uy 1)
Z_ (—k)=(m—k)e(vye,,) k>0,
(5.4)
Z_(k) =i(wy_1),
ZA(—k)=(m+k)elwy_,), k=l

Noting that the ¢ dimension of A,, is precisely the g dimen-
sion (3.3) of the vacuum space QV,.. we find that we can

realize V,, as
Vi = C[x.0,5,,0i >0] ® A,,,. (5.5)

We will refer to the right-hand side of Eq. (5.5) as super
Fock space. The action of :g\ll1 ,1 on super Fock space can now
explicitly be described:
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a

X2k

ﬂ,(k) = s /1( - k) = kxzkr

k>0.

J , p(—k)= —kyy.

pu(k) =
W

(5.6)

X, @=E_(D*E, ()*'Z, (2)

k>0 >0 neZ

Introduce Schur functions p, (x) by the generating function:

exp > x,2° = pp(x)2~

i>0 k>0

(5.7)

Then we have

=3 bl =02 3 h(Nz"" Y Z, (n)f""*”=z( S Beeinn(—DBOIZ, (n)z_mi”),
seZ\ neZ, k>0,

where
P () =pi(F (A +p)(D)/2)
Hence
X, (s5)= Pivisa(—0D(NZ . (n).
(neZ,I,k>0,
l4n—k=

(5.9)
Using the formulas of Ref. 1 one can also explicitly describe
the action of the complete superalgebraa_,,, on super Fock
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l4+n—k=s

(5.8)

r
space in terms of multiplication and differentiation opera-
tions with respect to the even and odd variables x,,y,,v;,w;.
We leave this to the reader.
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Different regularization schemes based on the heat-kernel method using as samples the chiral
Schwinger model and the Thirring model are discussed. As it happens with non-Abelian
anomalies, it is shown that different physical contexts require different specifications of the
fermionic generating functional. Also discussed is the introduction of an arbitrary parameter
through the regularization and how this affects the resulting quantum theory.

|. INTRODUCTION

Quantization of gauge theories with Weyl fermions has
recently received a lot of attention, particularly after the re-
sults of Jackiw and Rajaraman' on the consistency of the
chiral Schwinger model and those of Faddeev and Shatash-
vili? on the modification of the canonical quantization by
addition of new degrees of freedom through a Wess—Zumino
action.

Prompted by these important developments, many in-
vestigations®>™'" analyzed the possibility of quantization of
anomalous theories, usually considered as inconsistent—
nonunitary and nonrenormalizable—if cancellation of
anomalies was not carefully contrived.

Analysis of potentially anomalous theories requires the
development of regularization procedures that take into ac-
count the peculiarities of chiral fermions. In the path-inte-
gral approach, where most of the above mentioned advances
were made, calculation of anomalies depends on a precise
understanding of the functional integration measure and on
how it changes under the original classical symmetry of the
theory.'>!? In this approach one defines a Jacobian J asso-
ciated to this symmetry transformation (known as the Fu-
jikawa Jacobian'?) as a ratio of fermion determinants. If this
Jacobian is not trivial, the associated Noether current is
anomalous.

The crucial point is that each determinant appearing in
J needs a regularization (for example, for Dirac or Weyl
fermions the Dirac operators appearing in J are unbounded
and hence determinants are ill-defined quantities).

Typically, one regulates J by inserting exp( — R /M ?)
(Refs. 12 and 13) with R some positive definite operator
called the regularization operator (RO); then one performs
all computations keeping M * fixed and finally one takes the
limit M ?— « at the end of the calculation. This method is
usually known as the heat-kernel method. It is important to
note that the choice of RO determines whether the Jacobian
is trivial or not.

If one has more than one classical symmetry it may hap-
pen that the measure and the RO cannot be made invariant
under all of them. It is then a matter of physical prejudice as
to which symmetries one maintains at the quantum level and
which symmetry becomes anomalous. Alternatively, it may
happen that there is no choice of RO respecting the original
symmetry of the theory (this last case corresponds to the
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case of chiral models). In any case, anomalies arise.

For gauge theories with Dirac fermions, the fermionic
Lagrangian dictates the choice of RO. Indeed, taking
R =D? (Refs. 12 and 13), with B = i@ + gA, the (Hermi-
tian) Dirac operator appearing in the Lagrangian, gauge in-
variance, the fundamental symmetry to be preserved, is en-
sured. With this choice classical chiral symmetry is
sacrificed at the quantum level. The resulting anomaly in the
axial current obtained using the heat-kernel approach, coin-
cides with the perturbative results'* as well as with the ones
obtained using the {-function method. (In fact, for Hermi-
tian B one can show the equivalence between the heat-kernel
method and £-function method. '?)

If 4, does not represent a gauge field (for example,
when it is introduced as an auxiliary field in purely fermionic
models like the Thirring model) then it is not compulsory to
make the choice R = B2 More general RO can in fact be
introduced'® and in this form more general results obtained
(as it happens in the Thirring model case, when a one-pa-
rameter family of solutions is known to exist'®).

Gauge theories with Weyl fermions are another exam-
ple in which regularization ambiguities arise. This is due to
the following peculiarities of chiral models.'”'®

Primum: The Dirac operator appearing in the Lagran-
gian, D = P(1 — y5)/2 (we take left-handed fermions for
definiteness), does not define an eigenvalue problem (it
maps negative chirality spinors into positive chirality ones).

Secundum: A modified Dirac operator 5, constructed
by addition of a free right-handed sector so as to define an
eigenvalue problem, is neither gauge-covariant nor Hermi-
tian. Eitller analytic continuation of D (Ref. 18) or use of
R= (DD * + D+D)/2 (Ref. 10) breaks gauge invariance
at the quantum level.

Tertium: A family of RO depending on certain param-
eters are in fact admissible.'®=2® This leads to regularization
ambiguities that can be exploited to render the quantum the-
ory consistent (at least in two space-time dimensions, as first
shown in Ref. 1).

We address these regularization problems in the present
work using the chiral-Schwinger model (CSM) and the
Thirring model (TM) as examples. Solutions of these two-
dimensional models are known and hence their path-integral
treatment can be used to get insight into the more general
problem of regulating Jacobians and fermion determinants.

The paper is organized as follows. In Sec. I1, after briefly
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defining the models (II A) we discuss the change in the fer-
monic measure under chiral and gauge transformations
(Sec. II B). We then discuss the regularization dependence
of Jacobians and fermion determinants for the CSM and TM
in Sec. II C.

From these results we evaluate in Sec. III fermion cur-
rents, anomalies, and current—current commutators show-
ing how different regularization schemes affect the results.
We give in Sec. 1V a summary of our results and conclusions
leaving for an Appendix details of the calculations.

Il. FERMION DETERMINANTS USING DIFFERENT
REGULARIZATIONS

A. The models

We shall consider two two-dimensional fermionic mod-
els where regularization ambiguities may arise: the Thirring
model and the chiral Schwinger model. The first one is de-
fined by the (Euclidean) Lagrangian

&L = 9i p — (8/2) (Py,. )™ 2.1)

Our conventions for matrices are
YuVs + VoV =26,,,
Vs = oV
€= —Ep=1

The generating functional for this model is

Zra[S,1= [27 wexp( ~ [axcz +asm),
(2.2)

where S, (x) is an external source.
Using the identity?’

em(%J(Tm ¥?d 2x)

= ng” exp( - j[%A 2+ gi/‘/At//]d.zx),

the generating functional can be rewritten in the form

ZlS.] =f,@7p Dy DA, exp( - JHA;

(2.3)

+ YSy + yD (4 ]¢]d2x), (2.4)

with
DA =id+gd. 2.5)

Note that the auxiliary field 4, represents two degrees of
freedom: due to the presence of the Af, term in (2.4), no
gauge fixing has to be implemented. Then, when regulariz-
ing the fermionic path integral (i.e., the fermionic determi-
nant), gauge invariance cannot be invoked to select the regu-
lator.

A similar situation arises in the quantization of the
chiral Schwinger model.! Indeed, the fermionic Lagrangian
for this gauge theory coupled to left-handed fermions is

Leosm = 12(”9 +gA)((1 —¥s)/ 2= 'ZD [4 1.

The fermionic part of the generating functional reads

(2.6)
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Z csm =f@:}@¢exp(—ffcw dzx)

=det Dcsy [4 ]. (2.7)

Now, since the Dirac operator for chiral fermions
(Dcsm [A4 ]) maps negative chirality spinors into positive
chirality ones, it does not define a correct eigenvalue prob-
lem. Usually one overcomes this difficulty by introducing
right-handed free fermions,'”'®

D[A]=DcsulA] +i8((1+75)/2)
=id + g4 ((1 —ys5)/2)
and defining
det Degp [A ] =det D[4 ]| req-

(2.8)

(2.9)

We have indicated with the subscript “Reg” that some
regularization has to be adopted since D[ 4] is an unbound-
ed operator. Now, the addition of right-handed fermions
(which can be justified by several arguments'”) solves the
chirality-flip problem but introduces an ambiguity. Indeed,
D[A] is not a covariant derivative and hence there is no
reason to expect

det D [ ]| e, =det D [4°] | req

with 44 the gauge transformed of 4,. As in the Thirring
model case, there is then no reason to use a gauge-invariant
regularization prescription.

B. Jacobians

For notation brevity we shall call D[A4] either P[A4]
defined in (2.5) for the Thirring model or D[ A}, defined in
(2.8) for the chiral Schwinger model.

We shall evaluate the change in the fermionic determi-
nant (i.e., the Fujikawa Jacobian'?) associated with the fol-
lowing change of variables:

v=uy, ¥=91,. (2.10)
For the Thirring model #, and #, are given by
u, = e[rsas(x) + ig(x) ]t ,
, (2.11)
al - e[rs«#(x) —in(x)]¢

with 77 (¢) ascalar (pseudoscalar) field and ¢ a real param-
eter.

For the CSM, since the fermions are left-handed, trans-
formation®~'! can be simplified to'°

u,=exp[ +((1—y5)/2) (¢ —imt],

u, =exp[ —((1 +vs)/2)(¢ —im)t] .

Transformations (2.10) and (2.12) are chosen so that
for t =1 the corresponding Lagrangians become free. In-
deed, if we relate ¢ and 7 to the vector field 4, through the
identity

A, = —(1/8)(€,, .6 —3a,m), (2.13)
then, under transformations (2.10)—(2.12) the fermion La-
grangians become

L L =¢Dy,
with

(2.12)

(2.14)
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D,=D[(1—14]

and hence for t = 1 one has D, = id.

The Fujikawa Jacobian J(t) associated with transfor-
mations (2.10)—(2.12) relates the determinants of operators
D,[A] and D[A]

detD[A] =J(t)detD,[A4].

(2.15)

(2.16)

Since both determinants require a regularization, the
result for J(¢) necessarily depends on this regularization.
Here J(t) can be evaluated from the following differential
equation'® [derived from (2.16)]:

d d
— L ioggt) =L logdet D,| =o't
ar 87 =5 losde @0

Reg

(2.17)

[a regularization is understood in (2.17)].
In particular, the fermion determinant in the lhs of
(2.16) can be evaluated from the knowledge of J(1),

det D[4 ] =J(1)detid, (2.18)
with

J(1) =exp(—fl w’(t)dt). (2.19)

We evaluate a)’(to) using

o' (6) = lim 18D Devar (2.20)

At—0 At
For the TM (D, = B, ) one obtains

(D) =tr B [(vs¢p —in)B, + B, (ysd +in)] .

(2.21)
Analogously, for the CSM (D, = D,) one has
wtsw (1) =tr[D 7 (D,((1 = ¥5)/2)(¢ ~ i)
—((1+75)/20(6—imD)] . (222)

As we stated above, w'(#) needs a regularization that
can in principle destroy the cyclic property of the trace as
first observed in Ref. 25. This is a very important point: if the
cyclic property is assumed, (2.21) and (2.22) simplify to

Oy =2tr s, (2.23)

Wesm =t s (¢ —in) . (2.24)
We shall discuss this point in more details below.

C. Regularization dependence of Jacobians and
determinants

For gauge invariant theories, the regularization pre-
scription is chosen so as to respect gauge invariance. One can
prove that the {-function method, the heat-kernel one [ with
exp( — B?/M?) as regulator], etc., lead to the same gauge-
invariant answer for the fermionic determinant. Moreover,
the cyclic property of the trace holds. (This can be seen very
simply in the heat-kernel approach, since [exp( — D?/M?),
D,]1=0,)

We then have, for gauge-invariant models, for a trans-
formation like (2.10),"3

_449 spy|
dt ds s=0

(2.25)

@'(t) = lim 2tryspe R/M =
Mo
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provided the regulating operator (RO) R in the heat-kernel
approach coincides with D,. As we stated above gauge invar-
iance cannot be invoked in regularizing the Thirring or the
CS models. Then, there is no particular reason to use the -
function method or the heat-kernel one with R = D,. Infact,
more general prescriptions (compatible with Lorentz invar-
iance) can be implemented and we address this point now.

We consider here the heat-kernel approach (for the -
function method, see Ref. 24). We shall use as regulating
operator the following one'®~2*:

R=[D{)=[id +g(1—0A, +ag(1—1A4_]}?,
(2.26)
with
A, =A(1Fy5)/2). (2.27)

In (2.25) ais a parameter related to the one introduced
by Jackiw and Rajaraman' to take care of regularization
ambiguities in the CSM. In the present analysis, its presence
gives different weights tothe 4 , and A_ components which,
for the TM and the CSM correspond to independent degrees
of freedom. Another way of understanding the presence of
this undetermined parameter is the following. In computing
log det(id, +gA,) [logdet(id_ +gA_)] one gets in
principle a result F[A4, ] (F[4_]) depending only on 4
(A_). The complete determinant F[4, ] = det(id + gA)
including both right-handed and left-handed parts has nec-
essarily an arbitrariness

F[A,;]=F[A+]+F[A_]+CfAid2x. (2.28)

The arbitrary constant can be fixed only on gauge-invar-
iance grounds. One can easily obtain a relation like (2.28)
using D ¢ as RO, '

Now, since D ¢ is not Hermitian, two possibilities arise
when using the heat-kernel approach in order to have a posi-
tive definite R (Refs. 13, 28, and 29).

Analytic continuation y5 —iys in R, =D (2.29a)

or
Ry =(DDe" + D" D9/2. (2.29b)

The alternative (2.29a) has been shown'? to lead to the same
result as the { function (which is defined even if D is not
Hermitian). The alternative (2.29b) was proposed by Fu-
jikawa®® in his analysis of covariant and consistent anoma-
lies.

Now, in both cases,

[e—R/Mz;D‘] £0,
and then, the regulated forms of (2.21) and (2.22) and
(2.23) and (2.24) are not the same. This can be interpreted
as if the cyclic property of traces in (2.21) and (2.22) does
not hold.? We shall examine each possibility separately.

(I) One starts from (2.23) and (2.24) (Regl) obtained
using cyclic property of the trace. Inserting the RO one gets

O7m () | Regr = lim 2trysge RMT, (2.30)
M2

s (1) | regr = LM trys (¢ —imle ™ R/M° . (2.31)
M2
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(I1) Onestarts from (2.21) and (2.22) (Regll), getting
7v (1) |RegII = lim tr”z_l[(7’5¢ — in)D,
Mi_
+B,(ysd+im) e RM,

1_275)(¢—im

(2.32)

w'CSM(t)IRegII == hm trD,_'[I)[(
Mi.o

_ (l + Vs

2

)(¢ - iﬂ)bt]e~R/M2 .
(2.33)

We shall consider the two above-mentioned choices for
R, namely,

R, =D},

Ry =DD*+D" D,)/2.

We have evaluated w1y (¢) and w¢gy (¢) using regular-
ization Regl and ReglI, and regulating operatorR , and R 5.
We denote these choices in the form ReglA, ReglB, etc.

Details of the calculations are given in the Appendix. The
answer is

(2.34)

Otat | regia = (1 — 1) [%(1 +a) que,” 3,4, d*x
i
+—2;g(a—1)f¢a,‘,4ud2x],
DM |RegIB =(1 —t)—;;(l +G)J'¢€M d, A, d*x,
WM |R na = (1 —t)[ijqﬁe ) AVdZX-Fi(a— 1)
* T wy o 27
Xf¢8# 4,0, +€m,)d2x] ,
DM |RegllB =(1 _t)%(l +a) J¢6;tv ay A, dx,

’
Dcsm | ReglA

=(1_z)[zg—ﬁf(¢—m)e,wa#/1vd2x
+ii(a—l)f(¢—in)aA (8,, — i€ )dzx]
4‘”_ wtv\Yuv uv s
w'CSMIRe B = (l—-t)—g—(l—i-a)
¢ 27
Xf (6 —in)e,, d,4,d’x,
Ocsm | Regria =(1—t)i(1+a)
¢ 4
XJ (¢ —im)d, A,(€,, —ib,,)d’x,
@¢sm | Regue = (1 — t)i(l +a)
4

xf (¢ —im)d, A, (€,, —ib,,)dx.
(2.35)

819 J. Math. Phys., Vol. 30, No. 4, Aprit 1989

We shall see in the next section how all these regulariza-
tion-dependent results for ' affect the anomaly in fermion
currents, current—current commutators, etc. Note that for
a= 1R, and R coincide and @’ |gega = @'|regp @S can be
seen from (2.35).

Fermion determinants can be very easily obtained from
(2.18)-(2.19) and (2.35). We list the results: For the TM
we have

id +gA

log det[ ]
[/ ReglA

~Llg +a)fd2x¢D¢
47

bt (a— 1)fd2x o | (2.36a)
47

logdet[ia —_l—gA =L(1 +a)fd2x¢D¢, (2.36b)
I/ ReglB 47
log det[M]
149 RegllA
=L(1 +a)J.d2x¢D¢
47
+-tw@—1 fdzx ¢, (2.36¢)
47
logdetM =—1—(1+a)jd2x¢|:l¢.
L RegliB 47
(2.36d)
For the CSM
log det-m +gA((1 — 75 )/2)]
L 10 ReglA
=$Jd2x[(l + a)¢0s + (a — 1)nOn — 2in041 ,
(2.37a)
log det[iﬂ +8A((1— 75)/2)]
id RegIB
=$Jd2xm + )¢ — i(1 + a)n0]
(2.37b)
log. det[iﬂ +gA((1— 75)/2)]
149 ReglIA

-dxa J d*x[¢04 — 70y — 2041, (2.37c)
log det[w +gd ((‘1 — Vs )/2)]
1

& ReglIB

T

Some comments are in order at this point. For the CSM,
(2.36a) reproduces the usual result obtained following dif-
ferent approaches.!®7:1%1924 Indeed, using the identities

d.4, = (1/g)0n,

2.38;
€,,9,4, = (1/9)0¢, (2.38)

Eq. (2.37a) can be rewritten as
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i +gA (1 —y,s )/2)]
10 ReglA

=—g%J\d2xAu (6/1:1 —ieﬂa )aa[:l_laﬂ(sﬁ" + ier)AV
_ﬁ'ﬁJ‘Ai d?x .
87

This is, use of the heat-kernel method with exp( — B ‘,’Z/
M?) as regulator and use of the cyclic property of the trace
before regularization leads to the result first discussed by
Jackiw and Rajaraman.' The heat-kernel method with
(DD * + D *D)/2 as RO does not lead to (2.39). This dif-
ference in the results according to whether one uses R , or
R is not surprising. As it has been discussed in detail by
Fujikawa®**° for non-Abelian anomalies, the choice of R o
or R leads to two different forms of the anomaly, namely,
the consistent and covariant forms. The same difference oc-
curs using the stochastic quantization method that is analo-
gous to the heat-kernel method either with R , or R (Ref.
36).

It is interesting to note that the extended version of the
{-function approach presented in Ref. 24 so as to include an
a dependence also leads to (2.39).

Introduction of the RO before employing the cyclic
property of the trace yields a different result for the determi-
nant

log det[

(2.39)

log det["y +gA ((‘1 — s )/2)]
Regll

id
ocfdzxA,‘(am — i€, )3,07 '35 (85, + i€g, )4, .

(2.40)

Note that the addition of log det(id + g4 _) given by (2.39)
and the corresponding result for log det(id + g4 . ) leadsto
the Dirac fermion determinant (2.36a) which for ¢ = 1 co-
incides with the well-known gauge invariant Schwinger
model determinant.

Concerning the Dirac fermion determinant evaluated
for the Thirring model, note thatfora =1 (i.e, R=R , =
Rg =id + gA), [R,D] = 0, hence the four results coincide
giving the Schwinger model determinant.

As we mentioned above, it is well known that different
RO’s lead to different forms of the non-Abelian anomaly.
However, physical consequences of these different forms
may be identical. In particular, the anomaly cancellation
conditions are the same for the covariant and consistent
anomalies.?’ We shall discuss this aspect of our results in the
next section.

lil. ANOMALIES AND CURRENT-CURRENT
COMMUTATORS

From the generating functionals (2.4) and (2.6) we can
easily find the vacuum expectation value of fermionic cur-
rents:

1 0Z tm

J™M— (i (x) =
# <j# )TM gTM O85#(x) |sr—o

= (Y1, ¥)
(3.1)
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1 0Z csm
ECSM 64 *(x)

(52

[Note that in (3.2) the gauge field 4,, is considered as a
background and then it can be used to find J,; for the TM
being A . an auxiliary field, an external source S, has to be
introduced in order to compute currents. ]

Current—current correlation functions are given by

GR”(x,y) = (T(j,u (), DN v
1 8 v

J,(ESM = (J,‘ (X))esm =

(3.2)

= : , (3.3)
Fm OSUx)ESV(Y) isvi_s—o
GL:EM(X:.V) = (,T(j,, (X, (1)) csm
1 8 Z csm (3.4)

Zesu  OAM(x) 8A™()
and then current—current commutators can be evaluated
from (3.3) and (3.4) by means of the Bjorken-Johnson—
Low (BJL) limit, %33

We start with the CSM currents. Relation (3.2) can be
rewritten in the form

é
JSM—=_" logdetD[A4],
84+ 8

nw

(3.5)

and hence the results given in (2.37) for the CSM determi-
nant, written in terms of 4,, can be used. For the regulariza-
tion leading to the usual form of the fermion determinant
{i.e., the regularization ReglA leading to (2.39)] we get

JESM = (g/4m)

X [(5;41/ - ieyv)av(¢ + 177)] - (32/47)0.4# s
(3.6)

and hence

I M= (g/4m)[(1 —a)d, A, +ie,d,4,].
From this well-known result one infers that the theory is
anomalous whatever the value of a is chosen. As proved by
Jackiw and Rajaraman,' the effective action for 4, resulting
from the addition of the fermion determinant (2.39) and the
1F? , terms defines a sensible unitary Lorentz invariant theo-
ry provided a> 1 with a massive gauge meson (with mass
g°[a*/(a — 1)] and massless excitations). It is important to
stress at this point that any of the three other regularizations
lead to this result,' confirmed by many other investiga-
tions, '%-24

Concerning the other regularizations for the CSM, use
of R 5 instead to R , leads to

JESM | ReglB — (gz/sﬂ‘)(l + a)e'“VAV
and
3T M| regin = (€8T (1 + Ve 3, A, (38)

which coincides with (3.6) only for a = 1. Neither this re-
sult nor those arising from the Type II regularization,

Jy |Regll =f(a)(Ay + 6;1,1/14\/) ’ (39)
[with f (@) = (g/4m) (1 + a) for types A, B of RO] lead

(3.7)
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to the results obtained by many authors using different ap-
proaches and reproduced by type IA regularization.

Current—current commutators for the CSM are, as it is
well known,** anomalous (in particular [ j,, j,} « 8'). Only
if gauge degrees of freedom are incorporated as dynamical
ones as proposed in Refs. 2-5 one gets [ ji, j,] = 0 as proved
in Ref. 35.

Concerning the TM we shall compute current—current
commutators in order to compare the results obtained using
different regularization with the well-known Klaiber re-
sults.'®

As we stated above we use the BJL method*>** that
starts from the identity

<[],‘ (x);jv(y)]e.t.) = E{%[Gyv (X1 :X0;Y15%X0 + €)

— Gm,(xl,xo;y,,)co —€)] (3.10)
and using Eq. (3.3) for evaluating G [}!. If we write the fer-
mion determinants listed in (2.36) in the form:

id +gA] _

log det[
i

_f_ﬂfdzxA#DuvAv, (3.11)

it is easy to see that

(X)) = (/) [ —=8,.8x =+ DL (xN],
(3.12)

where

2,, =6, +(&/mD,, (3.13)

Only O~ ' terms in & ,, contribute to the €0 limit in
(3.10). Indeed being

0O,' = (1/2m)log | x — y| (3.14)

D—l
uv

it appears in G, (x,X0;¥1,)o + €) through a term G

ol €(x; —y,) o8 .

O e A
responsible for a §’ behavior in [ jj, j,]. All other contribu-
tions to G,,, vanish when computing the rhs in (3.10).

It is important to stress that if one uses R 5 (either with
Regl or ReglII) one then gets the same results obtained using
the operator approach (see, for example, Ref. 16). In partic-
ular [ jo, jol. =0and

(3.15)

[JosJi Jew = (1/8)R(a)8' (x), (3.16)
with
—1
h(a) = [(1 + 7/g%a) ~ !, fcir RegIB, (3.17)
(14 27w/¢°(1 +a))~", for ReglIB.

The a dependence of the coeficient corresponds to the exis-
tence of a one-parameter family of solutions in the TM. As
stated by Klaiber, this corresponds to an undetermination of
the coupling constant in the sense that any value can be pro-
duced with an appropriate current definition (or equivalent-
ly with an appropriate value of the regularization parameter
a).

Concerning regularization A it leads to an anomalous
result for [ jo, jo1,
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[jo (x);joM] = k(a)é'(x) .
Only for a = 1, this choice leads to a sensible result.

(3.18)

IV. SUMMARY AND CONCLUSIONS

We have studied regularization ambiguities in fermionic
theories using the path-integral approach. We have chosen
as samples the Thirring model and the chiral Schwinger
model, two well-known, two-dimensional theories in which
gauge invariance cannot be used as a guiding principle when
selecting a regularization prescription.

We have employed a heat-kernel regularization, which
consists of inserting exp( — R /M ?) in ill-defined quantities
(traces, fermionic Jacobians, etc.) with R some positive defi-
nite operator.

While in gauge-invariant theories identification of R
with a square of the covariant derivative leads to gauge in-
variant and unique results (for fermion determinants, chiral
anomalies, etc.) in the present models there is a wider choice
of regulators, which yield a family of solutions depending
(for the two-dimensional case) on an a priori arbitrary pa-
rameter.

A similar situation is encountered in the study of non-
Abelian anomalies®*?'*®; depending on the specification of
the fermionic generating functional (i.e., the fermionic de-
terminant) two different forms of Ward—Takahashi identi-
ties can be obtained. The corresponding anomalies are
known as covariant and consistent anomalies and both have
important applications in different physical contexts (see,
for example, the discussion in Ref. 30). It has been shown by
Bardeen and Zumino®' that one can always pass from one
form of the anomaly to the other one by changing the defini-
tion of fermion currents and hence the anomaly cancellation
conditions are the same for either form.

Inspired in Fujikawa’s discussion®® of these non-Abe-
lian anomalies using the path integral framework, we have
tested two forms for RO [Eqgs. (2.19a) and (2.19b)] (for
non-Abelian anomalies R , leads to the covariant result and
R to the consistent one). Moreover, since neither R , nor
R g commute with the Dirac operator appearing in the La-
grangian, regularization is not fully specified until one de-
cides the step at which the RO is inserted in ill-defined func-
tional traces. Different choices lead to the nonequivalent ex-
pressions (2.30) and (2.31) and (2.32) and (2.33).

We can conclude that, as it happens for non-Abelian
anomalies, different physical contexts require different
choices of regularization when studying chiral models or
purely fermionic models (like the Thirring model). For the
chiral Schwinger model, analytic continuation of the (ori-
ginally non-Hermitian) Dirac operator and insertion of the
RO after having used the cyclic property of the (ill-defined)
trace leads to the definition of a consistent unitary, Lorentz
invariant theory, as first discovered in Ref. 1 using a different
approach. This result cannot be obtained if one adopts the
other regularization schemes we have described.

For the Thirring model, a pure fermionic theory where
A4, is an auxiliary field, insertion of the RO before cyclic
property of the trace is used, leads to a sensible answer (for
R ) coinciding with Klaiber operator result.'®

D. Cabra and F. A. Schaposnik 821



In both cases there remains an ambiguity related to an
undetermined parameter (a) introduced through the RO.
For the CSM this leads to a whole family of consistent solu-
tions provided @ > 1 (the resulting theory consists of massless
excitations plus a massive particle with mass (g°/4m)[a*/
(a — 1)] and hence unitarity requires a > 1).

For the Thirring model the existence of a one-parameter
family of solutions was already known from the operator
analysis described in Ref. 16.

We then conclude that the physical situation must be
carefully analyzed in order to select a regularization pre-
scription. Moreover, ambiguities arising in this process of
regularization can be utilized in order to define a physically
sound theory. Although our discussion corresponds to the
(simpler) two-dimensional world, we think that our conclu-
sions also hold in other space-time dimensions. Indeed, dif-
ferent specification of fermion determinants and anomalies
are also encountered in four-dimensional non-Abelian mod-
els, in gravitational theories in 4k + 2 dimensions, etc. In
this context, it may be worth while to investigate the intro-
duction of arbitrary parameters that can be used to define
consistent quantum theories from potentially anomalous
ones. We hope to address this point in a future work.
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APPENDIX: DETAILS ON THE CALCULATION OF
FERMION DETERMINANTS

In Sec. II C we obtained for the Jacobian associated to
the fermionic change of variables (2.10)—(2.12) the result:

1
J= exp( —f a)’(t)dt) ,
0

where o’ (#) takes different forms depending on which regu-
larization is used.

In the first method we used (Regl) we inserted RO after
using the cyclic property of the trace and in

(A1)

’ . _ 2
wm (1) I Regl = I:m 2tr yspe = RM7,
Moo

(A2)

— R/M?

wCSM(t)|Regl= hm tr ys (¢ — in)e

~

In the second method (Regll) the cyclic property of the
trace was not used. We then obtained

oy (1) | Regll

in D,

= lim trB '[(ys¢—
Miox

+ B, (ysd +in)|e R,
wcsm (1) IRegI]
= lim tr B '[D,((1—ys5)/2)($ — in)
M2—~oo
in)D, e R/M*.

—((1+¥5)72)(¢ — (A3)
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In this Appendix we give some details on the calculation
of »'(¢) leading to the results listed in Egs. (2.35) and
(2.36).

We begin with evaluation of @y () |gegr - Introducing a
representation of § function we have

g (1) | Regr = lim tr
™ |Rg1 Mi-w (27)2

y—x
XJ d*xd?k e®™e” D%/szsqi(x)e’ thx

(A4)
and then

@ () lResI = hm tr—J¢(x) dx

Xszke—(D,+k)2/Mz. (AS5)
Expanding the exponential and making the change of
variables k = Mp, it is easy to see that only the M ~2 term in
the expansion will contribute in the limit M2,
Then
@1 (1) | Regr = Py f d*x tr ys¢(x)D? f e="d%.(A6)
Performing the Gaussian integral and using the corre-
sponding RO we finally obtain the result given in (2.35a).
Concerning ReglIB note that although Ry cannot be
written as the square of some operator, one can show the fact
that calculations are equivalent to those performed with an
R B — g ?, Wlth
D, =id +8(1+a)/24,. (AT)

Now let us consider the second method (ReglII). In this
case we have

o1y (1) I Regll

= lim trD;'[(vs¢ —in)B, (A8)
Mo

+ B, (ys¢ +in)]e R/M.

The trace in (A8) implies one has to consider lim D~ '
x—y

(x,p). It is this divergent contribution that is the new ingre-
dient in ReglI that leads to a different result compared with

Regl.
Inserting
D~ 1(xy) _ e[rs¢(x) + in(x)](1 -0
1 3, -
XG() (x’y)e[75¢(y)—“7(}’)](141) (A9)
with G, the free fermion Green’s function,
G, (x) = (i/2m) (¥, %, /x%) (A10)
in (A8) one gets
O (1) | regn = lim fd a2k L
M 27
X [% id(ysd + in)]e—”‘("‘y’ . (A1)
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Now, following the same steps for the Regl case we get
Eqgs. (2.36).
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The Skyrme model is generalized to higher-dimensional Riemannian manifolds and the
geometric conditions under which homothetic maps are absolute or local minimizers of the

model are obtained.

I. INTRODUCTION

In the classical Skyrme model the field configurations
of baryons are minimizers among maps p: R* - SU(2), with
anontrivial “degree” of an energy functional E( p) obtained
by adding a higher-order nonlinear term to the o-model
functional; the degree of the minimizers is recognized as the
baryon number of the baryons. This model lacks an exact
analytic solution and mathematical existence results ap-
peared only very recently.? (In Ref. 3 a family of extremals
of the Skyrme energy are found under the radial ansétz.)
However, on the other hand, since the model is only an ap-
proximation to the real world, it seems promising to have the
model modified in various ways. It is not difficult to show
that if p is a well-behaved finite energy field configuration, it
must approach a constant matrix at infinity. Hence, intu-
itively, the space R® in the Skyrme model can be topological-
ly compactified to S> and one might as well study the modi-
fied model for field configurations p:S°-SU(2)( =S53)
with the correspondingly corrected energy functional. For
this reason, Manton and Ruback® established a compact ver-
sion of the Skyrme model through the introduction of the
energy

E(p) =f Q{0 (g7 'p*h) + 0,7 'p*m)},
M

where (M,g) and (N,h) are compact orientable three-di-
mensional Riemannian manifolds without boundary,
peC = (M,N), p*h is the pullback of the metric 2 under p, 2,
denotes the canonical volume element of (M,g) and o, (4)
are coefficients of the characteristic polynomial of the n X n
matrix A determined by the formula

det(d—AD = 3 (—A)"o,(4).
i=0

In the classical limit, M = S, N = §3( = SU(2)), Manton
and Ruback* showed that up to isometries the identity map
is the unique absolute minimizer of F among maps with non-
trivial degrees; they conjectured further that this is true for
themodel M = (1/7)83 (the standard sphere of radius 1/7)
for 731, N= 53, but not true for 7 < 1.

In the recent independent studies of Loss® and Manton,
it was shown that for maps p:M — N with degree & (in Ref. 6,
k = 1) between three-dimensional Riemannian manifolds,

E(p)>3|M|( 12 +p*) (n

provided that y*=|k | N |/|M | > 1. Moreover, if (M,g) and
(¥,h) are homothetic,” i.e., there is a diffeomorphism
¥:M— N such that y*h = 7°g for some constant 72 > 0, then
the lower bound estimate (1) for k = 1is uniquely saturated

6
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(up to isometries) by the homothetic map ¢ provided that
72> 1. In particular, the first part of the conjecture of Manton
and Ruback* was proved. Loss® and Manton® also showed
that ¢ is a local stable minimizer if 7 > J, but it may fail to be
so for 77 < 4. This picture confirms very well the opinion of
Manton and Ruback® that the mathematical elegance of
Skyrme’s original formulation becomes clear if one allows
the possibility that space is curved and that the skyrmion
energy is a nice measure of the size and shape of space; the
new version of the Skyrme model may be relevant to the
quark confinement problem.

It appears that a higher-dimensional Skyrme model
for field configurations p:(M,g)—(N,h) with dim
M = dim N = n>3 should be established through the intro-
duction of the energy

E(p)=f Q {o, (g7 'p*h) +0,_, (8 'p*h)}. (2)
M

Physically, this is a2 modified o-model suitable for higher-
dimensional target space; mathematically, in this model the
energy contains the interesting term yielding harmonic
maps.”® Our study below will follow the main line of Loss’.

Il. GENERALIZED SKYRME MODEL AND ENERGY
BOUND ESTIMATES

We assume throughout this paper that (M,g) and (N,h)
are n-dimensional compact orientable Riemannian mani-
folds without boundary. For smooth maps p:M—N we
might as well consider a more general model defined by the
energy

E.(p) =J Q. {0, (& 'p*h) +0,_,. (& 'p*M)},
M

where 2<2m < n. (The equality 2m = n will trivialize the
model; see Sec. IV.)

We denote by C# the usual binomial coefficients, with
the convention

Cko—_™
" kW n—k
C"=C%=1, C*=0forotherk.
Lemma 2.1: Suppose 4 is an n X n semipositive definite
symmetric matrix. Then
T (A)>Ch [0, (], k=1,n—1;

the equality holds if and only if 4 is a scalar matrix.
Proof: Let det(4 — AI) = (A, —A) -+ (4, — 4); then
A;>0and

k=1,.,n—1,
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From the arithmetic mean—geometric mean inequality we
have
k—1 k
O (A)/CE> (A A, 1,

the equality holds if and only if 4, = --- = 4,,.
For a finite set S, let #.5 denote the number of points of
S. Let R,, be the set of regular values of p:M— N and

k,=inf{#p~'(¢)|qeR,}.
We shall use the notation

|M | = vol(M) EJ Q,, |[N|= VOI(N)EJ Q,.
M N
Lemma 2.2:
f Q02 (g 'p*h) >k, N |.
M

Proof: Take geR,,. Let VCN be an open set such that
$:V-R" is a positively oriented chart, with
() = (¥',...,y") for ye¥. Then

(¢~ 1)*Q,, = (det(h;)) > dy' A+ Ndy".

Assume g€V and V is sufficiently small such that
p~ (V) = UTU; U; areopen in M; p:U; - V is a diffeomor-
phism; and U,NU; =0, i#j. We suppose, also, that U; is
sufficiently small so that we can choose a positively oriented
chart ¢;:U, - R" to make

(¢ D*a (g7 P, = sgn( ply) (47 H*Q,
where sgn( p| Y, ) = + 1 (respectively, — 1) if p is orienta-
tion preserving (respectively, reversing) on U,. Consequent-
ly,

f 0.’11/2(g— lp*h)ng

Y

=f (¢j—1)*0.:'/2(g—1p*h)ﬂg
v (Up

£

= sgn( ply ) (671)*Q,
sgn( ply)¢(P)

=f (¢—‘)*Q,,=JQ,,. N6
(M 14

Therefore,

f a2 (g 'p*hQ, = mf Q,,)kpf Q,.
(V) v v

Given €>0, there exist the above chosen V,;CN,
Jj=1..,lsothat VNV, =0 and

O<[N|—f Q, <e.
U’

ji=1Y;

Butp~™'(V)Np~'(V;) =0, i#j, s0

i
[areiomasy [ o,
M

Jj=1Jp7"(¥)
!

>k, 3 | Q,3k,(N|—e).
i=1J%;

The lemma is proved.
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Lemma 2.3: If p:M— N is a k-fold covering, then
J o (g~ p* )0, = K |N|.
M

Proof: Given €>0, choose a finite open covering
{V,|j = 1,..,1} of N such that

1
0< 2 Q, — |N|<e,
=1y
p (V)= UJ’; WUy UyNU,; =0, i1 p:U; > V) is a dif-
feomorphism; i = 1,...,k,j = 1,...,/; and on every UjorV,
there is defined a positively oriented chart. Since
{U;li = 1,..,k,j = 1,...,1} is a covering of M, we have from
(3) that

f o2 (g~ p*h)Q,
M

<23

i=1=1JU;

k !
-3 zj Q, <k(IN| + €.
Vj

i=1j=1

ol (g™p*hQ,

The desired equality follows from Lemma 2.2 and the
above inequality.

We can now state the main result of this section.

Theorem 2.4 For p:M-N, k,>k>1,
u=(k|N|/|M|)"", and 2m < n, we have

(i)

E, (p)>CrIM|(p>" +p*> "~ ™), if u>1,
(ii)

E,(p)>2kCTIN|, if p<l.

In the case of (i), equality holds if and only if p is a k-fold
covering satisfying p*h = u’g.
Proof: From Lemma 2.1 we have

T (87 p*h)>C 0, (g p*h) ] ST EF
and
00 m (&7 IP*W)>C [0, (g ) ] STV

=Cr[o, (g p*h) -7
Thus

E.(p)>Cl(A+B), 4)

where

A= 0,[0,6 0 m 7T,
M

Bsf Q, [0, (g p*h) ] F-C7.
M

Using the formula C7_ | + C7 ! = C7 we obtain, by
Lemma 2.2 and the Schwarz inequality,

k INK'[ Q,[o, (g_’p"‘h)](c"m:" +CR_0CT  g1i2g 12
M
(3

Moreover, since p=(C7_,/C7~ ) > 1, it yields, from the
Holder inequality,
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m— m l/p
A<(f ﬂg[mg—‘p*h)]‘c"-"’c""’) M|V
M

— lMll/qB 1/p. (6)

Combining (4)-(6) we obtain, by setting a=4 /|M | and
B=B/|M |, the inequality

E, (p)>|M|C7 min{(a + B)|aB> p*"a’<B}
= |M|C 7 min{a + max( z*"/a,af)}
= |M|C 7 min{ f(a)|a>0},

where

2n/(p+ 1)
a+af, AN

fla) = [a + u*/a,
From this we easily conclude that
flag) ="+ > "™, u>l,
Ap)=2" p<l.

For p:M - N, with k, >k, if the equality in case (i) in
Theorem 2.4 holds, then from Lemma 2.1 and the Schwarz
inequality we reach (in local coordinates) g~ 'p*h = 721 for
some real constant 7. Hence 77 = u®. Now p*h = u’g,
p:M— N must be a local diffeomorphism and consequently,
by the compactness of M, a covering map. From Lemma 2.2,
p:M— N must be a k-fold covering.

Sufficiency is similarly proved by using Lemma 2.3.

Corollary 2.5: For p:M— N, let k = deg( p) and assume
p=(k(N|/|M|)">1. Then E,(p)>Cr|M|(u*"

+ p*("~™); equality holds if and only if p is a k-fold cover-
ing which is orientation preserving or reversing and satisfies
p*h=p’g.

Proof: The result follows from Theorem 2.4 and
k,>|k|.

We shall call a smooth map :(M,g) — (N,h) k-homo-
thetic if ¢ is a k-fold covering map and y*h = 7°g for some
constant 7. One-homothetic maps are conventionally called
homothetic.

From Corollary 2.5 and the argument given in Ref. 5 the
following result is immediate.

Corollary 2.6: Let 1:(M,g) — (N,h) be homothetic, with
p*h = 77g. If 72> 1, then up to isometries ¥ is the unique
minimizer of E,, among all maps p of nontrivial degrees,
and, hence,

min{E,, ( p)|p:M—- N,deg( p) #0}

aza,=p
a<a.

min{ f(a)|a>0} = [

=E, () =CT|M|(F" 4 r*n=m™),

Topology can often be used as a criterion for establish-
ing some physically interesting nonexistence results.

For example, if N is simply connected then (M,g) and
(N,h) can never be k-homothetic for k> 1 since for a cover-
ing map p:M-N there is an induced surjection
7,(N,q) »p~'(q) for every geN. Moreover, if M is simply
connected, up to isometries there can only exist, at most, one
k-homothetic map (M,g) — (N,g) for k = 1,2,... because any
two covering maps M — N must be equivalent. In particular,
we can conclude that the energy lower bound obtained in
Refs. 4 and 5 for the three-dimensional spherical Skyrme
model can never be attained for |k | > 1.
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lll. STABILITY ANALYSIS OF THE HOMOTHETIC MAPS

If :(M,g) - (N,h) is homothetic, with ¢*h = °g and
7231, then ¢ is an absolute minimizer among maps M—N
with nontrivial degrees of the energy E,, . It is not difficult to
show that 1 is always a critical point of E,, whatever the
value of 7° (see the computation below); hence it will be
interesting to know whether or not ¢ can still be a stable local
minimizer of E,, for 7° < 1. For a three-dimensional model
Loss® and Manton® have shown via the second-variation
analysis that ¢ is no longer an absolute minimizer for 7 <},
but that for 7*> 1 the second variation of the energy func-
tional is positive, which reveals that in this geometric range
is a stable local minimizer. Thus, the critical value of 7 for
stability transition in the three-dimensional Skyrme model is
7, = 1. We believe this critical value can be reduced by mak-
ing the space dimension larger.

Let p:M— N be a smooth map. Then p = yog, where
é = ¥~ 'op. Hence

F, ($)=E,(p)

=f 0,{7"0, (g~ '¢*g)
M

+ 7o, (g7 ) )

Now the stability problem of ¢ is equivalent to the stability
problem of ¢ = id:-M - M.

Let ¢,:M — M be aflow generated by an arbitrary vector
field X: M — TM. As usual, let .7, denote the Lie derivative
with respect to X. Our computation below will follow a
somewhat indirect path.

In local coordinate representations, let 4,(z),...,4, (1)
be the eigenvalues of matrix g~ '¢*g at a fixed point xeM.
Then

A (8)-4, (2).
Hence
2(ox g1 =0

=CiZlA1(0) + - +1,(0))

=CLC| %(al(g“tﬁ‘,"g))l,:o =Crll0,(g7'.L48)
because 4,(0) = - =4,(0) =1.

Therefore, ¢ = id is always a critical point of F,, as can
be seen from

%Fm(ﬁéz)l::o =(P"Cr + A mCIIrT Y

Xf o,(87'-Lx2)Q,
M

= (TZMCnm:ll + 72T mCT )
Xf div, (X)Q, =0.
M
Furthermore,
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d? 1
F(ak(g )| i=0
=Ck-1A10) + -+ 17(0))

+Cko2 ck (24:(0»1;(0))

i<j

d? -
=C1zl 250 91—
+5 CETICET iR Z o)

— o ([g7'-Zx8]™)
and consequently,

d2
FFm(¢t)|t=0

= (PTCRTF O+ 2T mCr L C )

X[ 0,0t L 20— or([e7' L8]]
M

+ (T2m C:'n_—ll _+_ TZ(n—m)Cﬂ"l_ . )
dz

e w0,

One can derive from the semigroup property of the flow ¢,
that

d _ _

9 [ o g0, = [ a0t .00,

dt Ju M
and thus

d2
IR

d _
=4[ aier 2200, )

(D

t=0

t=0

t=0

=f {m( [¢7'-Lxg]") —%a%(g“fxg)}ﬂg- (8)
M

Substituting (8) into (7) we obtain

d2
"?Fm (¢1)’r=0

= ll(n,m,'r)f al(Hz)Qg
M

+homn | A @200,
where
H=g ' % 4g— (1/n)o, (g7 L)1,
Linm) =7"Cr2 (1 —1Cr=)
+ 2 Cr (1=4C7 ),

12(nym97-)
=rmCcrt (i_i+i(1 _i)c'r'n_—z?-)
n n
1 1 1 1
preemep (LoLili Dep ).
"\n 2 + 2 n 2

Thus if /,(n,m,7) >0 and L,(n,m,7) >0, we must have
{d?F,, (#,)/dt?}|,_,>0; the equality holds if and only if
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X:M- TM is a Killing vector field. Therefore we can con-
clude with the following theorem.

Theorem 3.1: If :(M,g) — (N,h) is a homothetic map
with y*h = gand I, (n,m,7), ,(n,m,7) >0, then ¢ is a sta-
ble local minimizer of the energy functional E,, in the sense
that for any nonisometry flow ¢,: M—M, {d?F, (¢,)/
dt?}|,_o >0.

Choosing m = 1 [model (2)] as an important example,
we have

I](n,l,’)') = Tz + %7’2("_ 1)(’1 - 1)(4 - n))
Lnl,r) =7(1/n—})

+ 72 =PQ2/m+n/2-2)(n—1).

Accordingly, for n = 3 we have 7% > }, as was obtained
by Loss® and Manton®; for n = 4 we have 7* > |, forn = 5 we
have } > 7°> 4, and for n = 6 we have { > 7 > . In general
we must require

n—2
@+nn—4))n-1)

<PV <

2
(n—1(n—4)"’
to ensure that /,(n,1,7), L,(n,1,7) > 0.
In the parameter range

2/(n—1D(n—4) <" 2 1, wheren>5s, 9)

1, <0, 1, > 0. If there is a non-Killing vector field X:M - TM
so that o,(g"'.%xg) =0 on M, then H #0; hence
{d?F,(¢,)/dt?}|,_o <0 for the one-parameter flow
¢, M—M generated from X. Therefore, the homothetic
map ¥:M — Nis no longer a local minimizer for 7in the range
(9) when n5. In general we have nothing conclusive about
this range.

n>5

IV. REMARKS

(i) If n is even and 2m = n, let us consider another pos-
sible Skyrme model:

E(p) =f o, (8~ p*)Q,,
M

where p:M— N is smooth.
Using Lemmas 2.1-2.3 and Theorem 2.4 we have

E(p)>czm,,.f oy (g p*)Q, >k, CT,IN|;
M

the equality holds if and only if p is a k,-homothetic map,
with

7= (k,|N|/|M )"

In particular there is no restriction on the range of
k,|N |/|M |. Consequently, the above model may be of little
interest because not much geometry is captured. This exam-
ple also shows that there is an effective compensation
between the lower- and higher-order nonlinear terms o,,, and
O,_n; when m =n — m, some interesting geometric re-
strictions will be absent.

(i1) An analogous investigation can be made for the fol-

lowing “full” Skyrme model:

Yisong Yang 827



1 'T. H. R. Skyrme, Proc. R. Soc. London Ser. A 260, 127 (1961); Nucl.
E(pp= > emj 0.(87 'p*h)Q,, Phys. 31, 556 (1962).
l<m<n—1 M 2M. Estéban, Commun. Math. Phys. 105, 571 (1986).
where p:(M,g)—-(Nh) is smooth and ¢€,>0, 3V(..,:;I‘;. l}(g);x;anov, L. V. Frolov, and A. S. Schwarz, Theor. Math. Phys. 37,
— 1038 ( )-
m=12,.,n—1. “N. S. Manton and P. J. Ruback, Phys. Lett. B 181, 137 (1986).
SM. Loss, Lett. Math. Phys. 14, 149 (1987).
ACKNOWLEDGMENT SN. S. Manton, Commun. Math. Phys. 111, 469 (1987).
'G. Téth, Harmonic and Minimal Maps (Wiley, New York, 1984).
I wish to thank the referee for pointing out Refs. 3and 6.  ®J. Eelis, Jr., and J. H. Sampson, Am. J. Math. 86, 109 (1964).

828 J. Math. Phys., Vol. 30, No. 4, April 1989 Yisong Yang 828



Configurational interference in boundary-value problems governed

by the Helmholtz equation
G.S. Singh

Department of Physics, University of Ranchi, Ranchi 834008, India

S. N. Singh

Department of Physics, Ranchi College, Ranchi 834008, India

(Received 23 June 1988; accepted for publication 2 November 1988)

A rigorous approach is discussed for solving the two-dimensional Helmholtz equation in a
multiply-connected domain consisting of a ring of IV circles distributed symmetrically within a
closed space. The outer boundary has been taken to be such that the system as a whole has N-
fold rotational symmetry. The Dirichlet boundary condition has been satisfied exactly at the
outer as well as at each of the inner edges, using the addition theorems for the cylindrical
Bessel functions in conjugation with the Fourier expansions. Numerical results, showing
spatial configurational interference, are presented for the lowest cutoff value of the symmetric
mode as a function of separation between centers of two inner circles, in the case N = 2 with
circular outer boundary. The application of the method to various problems of physics and

engineering is enunciated.

I. INTRODUCTION

Singh and co-workers"? have obtained the solution of
the two-dimensional Helmholtz equation

a* 1(a 1( 32 2] _

FER (ar) * ﬂ(aoz) TP =0 ()
in a mathematically compact and computationally simple
form for an eccentric annular circular region. The approach
has been applied to study vibrations of membranes,* higher-
order cutoff wavenumbers of TE and TM modes in electro-
magnetic waveguides,* and control rod problems in reactor
physics.> These applications encompass both the Dirichlet
and the Neumann boundary conditions. The method has
been further extended to deal with the polarization charac-
teristics of eccentric-core circular optical fibers.® However, a
number of systems of technological importance coming
within the purview of the Helmholtz equation may have the
cross-sectional view of multiply-connected regions. The
present paper considers the generalization of the solution of
Eq. (1) to such domains.

Lin’ presented an analytical scheme to calculate the ad-
missible acoustic propagation modes of fluid in a circular
duct containing an assembly of circular cylinders, as might
occur in gas-cooled fast breeder reactors and advanced gas-
cooled reactors. Murray® has discussed a method for calcu-
lating the effect of a number of control rods in thermal nu-
clear reactors requiring large reactivity control. But our
comments,> where we have pointed out the errors in, and
corrected the expressions of, works dealing with the vibra-
tions of membranes,® would also affect the expressions ob-
tained in Refs. 7 and 8.

Lamarsh'® has done an approximate but analytical
study of the effect of a ring of cylindrical control rods in bare
cylindrical reactors. On the other hand, exact investigations
by Saito and Nagaya'! for thin plates with circular holes are
limited to the infinite systems only. Yamashita e al.' have
used the group-theoretic approach, as suggested by Mcl-
saac,'? for processing the symmetry of multiple dielectric
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waveguides, combined with the point-matching procedure
for analyzing the optical fibers with symmetrically distribut-
ed multiple cores. Hence an exact analytical approach is
needed for investigations of the systems characterized by
finite domains of multiple connectivity.

The central issue in obtaining a rigorous solution for the
multicentered problems under consideration is the search
for an approach which could be utilized to satisfy the bound-
ary conditions at all the edges exactly. In order to achieve
this, we exploit Graf’s addition theorems'* for the cylindri-
cal Bessel functions together with the Fourier expansions. It
seems pertinent to mention that in contrast to the views ex-
pressed by Lin’ as well as by Nagaya'® (which were without
any logical support), the use of the Fourier expansions is an
exact method for satisfying the boundary conditions.”

Section II contains the detailed accou